To solve this exercise it is necessary to apply the concepts related to Robert Boyle's law where:

Where,
P = Pressure
V = Volume
T = Temperature
n = amount of substance
R = Ideal gas constant
We start by calculating the volume of inhaled O_2 for it:


Our values are given as
P = 1atm
T=293K 
Using the equation to find n, we have:




Number of molecules would be found through Avogadro number, then


The hypothesis because its very hard to make and it confounds me
The subatomic particles that acts like a mini-magnet is electron. Electrons are negatively charged sub atomic particles in an atom. The electron spin is a property of an electron that makes it behave like it's spinning; a spinning electron produces a magnetic field that makes it behave like a tiny magnet in an atom.
Answer and Explanation:
a. An oxygen-filled balloon is not able to float in the air, because the oxygen inside the balloon is of the same density, that is, the same "weight" as the oxygen outside the balloon and present in the atmosphere. The balloon can only float if the gas inside it is less dense than atmospheric oxygen. Helium gas is less dense than atmospheric gas, so if a balloon is filled with helium gas, that balloon will be able to float because of the difference in density.
b. The ship is able to float in the water because its steel construction is hollow and full of air. This makes the average density of this ship less than the density of water, which makes the ship lighter than water and for this reason, this ship is able to float. In addition, the ship is partially immersed, allowing the weight of the ship on the water to counteract the buoyant force that the water promotes on the ship. Weight and buoyant are two opposing forces that keep the ship afloat.
Answer: It's hard to say without characterizing the collision. But it will be either A if the collision is totally in-elastic, or B if the collision is totally elastic. It could be anywhere in between for partially elastic collisions.
Explanation:
momentum is conserved, so initial system momentum will be left to right.
The velocity of the center of mass is 50(5) / 550 = 0.4545... m/s
In an elastic collision, the lead ball will move off at twice that speed or 0.91 m/s to the right.
The steel ball will bounce back and move away at 0.91 - 5 = -4.1 m/s . The negative sign indicates the steel ball has reversed course and has negative momentum
In a totally in-elastic collision, both balls would move to the right at 0.45 m/s. The steel ball will still have positive momentum.