1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nasty-shy [4]
3 years ago
7

Con lắc lò xo có độ cứng k = 100N/m được gắn vật có khối lượng m=0.1kg, kéo vật ra khỏi vị trí cân bằng 1 đoạn 5cm rồi buông tay

cho vật dao động. Tính vmax vật có thể đạt được
Physics
1 answer:
Delvig [45]3 years ago
8 0

Answer:

The maximum velocity is 1.58 m/s.

Explanation:

A spring pendulum with stiffness k = 100N/m is attached to an object of mass m = 0.1kg, pulls the object out of the equilibrium position by a distance of 5cm, and then lets go of the hand for the oscillating object. Calculate the achievable vmax.

Spring constant, K = 100 N/m

mass, m = 0.1 kg

Amplitude, A = 5 cm = 0.05 m

Let the angular frequency is w.

w = \sqrt{K}{m}\\\\w = \sqrt{100}{0.1}\\\\w = 31.6 rad/s

The maximum velocity is

v_{max} = w A\\\\v_{max} = 31.6\times 0.05 = 1.58 m/s

You might be interested in
Which of the following represents a possible magnitude for the force of static friction when Xavier applied 72.1 Newtons of forc
lana66690 [7]

The possible magnitude for the force of static friction on the stationary cart is 72.1 N.

The given parameters:

  • <em>Applied force on the cart, F = 72.1 N</em>

<em />

Based on Newton's second law of motion, the force applied to object is directly proportional to the product of mass and acceleration of the object.

F = ma

Static frictional force is the force resisting the motion of an object at rest.

\Sigma F = 0\\\\F -F_f = 0

where;

F_f is the frictional force

F= F_f \\\\72.1 = F_f\\\\F_f = 72.1\  N

Thus, the possible magnitude for the force of static friction on the stationary cart is 72.1 N.

Learn more about Newton's second law of motion: brainly.com/question/25307325

8 0
2 years ago
A student fills a tank of radius r with water to a height of h1 and pokes a small, 1.0 cm diameter hole at a distance h2 from th
Alik [6]

when a hole is made at the bottom of the container then water will flow out of it

The speed of ejected water can be calculated by help of Bernuolli's equation and Equation of continuity.

By Bernoulli's equation we can write

Po + \frac{1}{2}\rho v_1^2 + \rho g h = Po + \frac{1}{2}\rho v_2^2 + \rho g *0

Now by equation of continuity

A_1v_1 = A_2v_2

\pi (0.2)^2 v_1 = \pi (0.01)^2 v_2

from above equation we can say that speed at the top layer is almost negligible.

v_1 = 0

now again by equation of continuity

\rho g h = \frac{1}{2} \rho v^2

v = \sqrt{2 g h}

here we have

h = h_1 - h_2

h = 0.50 - 0.03 = 0.47m

now speed is given by

v = \sqrt{2* 9.8 * 0.47}

v = 3.03 m/s

7 0
3 years ago
Two high-current transmission lines carry currents of 29.0 A and 78.0 A in the same direction and are suspended parallel to each
jarptica [38.1K]

Answer with Explanation:

We are given that

I_1=29 A

I_2=78 A

d=38 cm=\frac{38}{100}=0.38 m

1 m=100 cm

a.Length of segment,l=20 m

Magnetic force ,F=\frac{2\mu_0I_1I_2 l}{4\pi d}

\frac{\mu_0}{4\pi}=10^{-7}

Substitute the values

F=\frac{10^{-7}\times 29\times 78\times 20}{0.38}=0.0119 N

Hence, the magnetic force exert by each segment on the other=0.0119 N

b.We know that when current carrying in the wires are in same direction then the force will attract to each other.

Hence, the force will be attractive.

4 0
2 years ago
Read 2 more answers
g Two masses are involved in a collision on an axis (one dimensional). One mass is six times the mass of the second. Both masses
statuscvo [17]

Answer:

v₁f = 0.5714 m/s   (→)

v₂f = 2.5714 m/s   (→)

e = 1  

It was a perfectly elastic collision.

Explanation:

m₁ = m

m₂ = 6m₁ = 6m

v₁i = 4 m/s

v₂i = 2 m/s

v₁f = ((m₁ – m₂) / (m₁ + m₂)) v₁i +  ((2m₂) / (m₁ + m₂)) v₂i

v₁f = ((m – 6m) / (m + 6m)) * (4) +  ((2*6m) / (m + 6m)) * (2)  

v₁f = 0.5714 m/s   (→)

v₂f = ((2m₁) / (m₁ + m₂)) v₁i +  ((m₂ – m₁) / (m₁ + m₂)) v₂i

v₂f = ((2m) / (m + 6m)) * (4) + ((6m -m) / (m + 6m)) * (2)

v₂f = 2.5714 m/s   (→)

e = - (v₁f - v₂f) / (v₁i - v₂i)   ⇒   e = - (0.5714 - 2.5714) / (4 - 2) = 1  

It was a perfectly elastic collision.

8 0
2 years ago
A vector → A has a magnitude of 56.0 m and points in a direction 30.0° below the negative x axis. A second vector, → B , has a m
MissTica

Answer:

  • The magnitude of the vector \vec{C} is 107.76 m

Explanation:

To find the components of the vectors we can use:

\vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )

where | \vec{A} | is the magnitude of the vector, and θ is the angle over the positive x axis.

The negative x axis is displaced 180 ° over the positive x axis, so, we can take:

\vec{A} = 56.0 \ m \ ( \ cos( 180 \° + 30 \°) \ , \ sin (180 \° + 30 \°) \ )

\vec{A} = 56.0 \ m \ ( \ cos( 210 \°) \ , \ sin (210 \°) \ )

\vec{A} = ( \ -48.497 \ m \ , \ - 28 \ m \ )

\vec{B} = 82.0 \ m \ ( \ cos( 180 \° - 49 \°) \ , \ sin (180 \° - 49 \°) \ )

\vec{B} = 82.0 \ m \ ( \ cos( 131 \°) \ , \ sin (131 \°) \ )

\vec{B} = ( \ -53.797 \ m \ , \ 61.886\ m \ )

Now, we can perform vector addition. Taking two vectors, the vector addition is performed:

(a_x,a_y) + (b_x,b_y) = (a_x+b_x,a_y+b_y)

So, for our vectors:

\vec{C} = ( \ -48.497 \ m \ , \ - 28 \ m \ ) + ( \ -53.797 \ m \ ,  ) = ( \ -48.497 \ m \ -53.797 \ m , \ - 28 \ m \ + \ 61.886\ m \ )

\vec{C} = ( \ - 102.294 \ m , \ 33.886 m \ )

To find the magnitude of this vector, we can use the Pythagorean Theorem

|\vec{C}| = \sqrt{C_x^2 + C_y^2}

|\vec{C}| = \sqrt{(- 102.294 \ m)^2 + (\ 33.886 m \)^2}

|\vec{C}| =107.76 m

And this is the magnitude we are looking for.

5 0
3 years ago
Other questions:
  • It is necessary to determine the specific heat of an unknown object. the mass of the object is measured to be 199.0 g. it is det
    9·1 answer
  • The motion of a car on a position-time graph is represented with a horizontal line. What does this indicate about the car’s moti
    7·2 answers
  • A puck of mass 0.70 kg approaches a second, identical puck that is stationary on frictionless ice. The initial speed of the movi
    11·1 answer
  • Missy's favorite ride at the Topsfield Fair is the rotor, which has a radius of 4.0 m. The ride
    5·1 answer
  • A battery powers a circuit for a small noisy fan. The fan's motor gets warm as it turns. What energy transformations are
    5·2 answers
  • 11. (a)What downward force is acting on you when you go down a waterslide? (b)What type of friction is
    11·1 answer
  • Milk with a density of 1020 kg/m3 is transported on a level road in a 9-m-long, 3-m-diameter cylindrical tanker. The tanker is c
    15·1 answer
  • a ball dropped from rest falls freely intil it hits the ground with the speed of 20 m/s . the tine furing which the ball is in f
    7·1 answer
  • If you jump upward with a speed of 1.70 m/s how high will you be when you stop rising?
    13·1 answer
  • The students on the right are applying a force of 100 N to the right. This is shown by the red arrow. The students on the left a
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!