1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
3 years ago
8

A boy starts from point A and walks 3 meters toward the south, then turns around and walks 7 meters toward the north. What is th

e boys placement from point A?
Physics
1 answer:
jolli1 [7]3 years ago
7 0

Answer:

-3m+7m =  4m

Explanation:

As he walks south, he is going down 3m (-3m). Then he walks up 7m (+7m).

You subtract the final position from the initial position to get displacement.

7m - 3m = 4m

You might be interested in
A second baseman tosses the ball to the first baseman, who catches it at the same level from which it was thrown. The throw is m
Anit [1.1K]
 <span>(a) 

Taking the angle of the pitch, 37.5°, and the particle's initial velocity, 18.0 ms^-1, we get: 

18.0*cos37.5 = v_x = 14.28 ms^-1, the projectile's horizontal component. 

(b) 
To much the same end do we derive the vertical component: 

18.0*sin37.5 = v_y = 10.96 ms^-1 

Which we then divide by acceleration, a_y, to derive the time till maximal displacement, 

10.96/9.8 = 1.12 s 

Finally, doubling this value should yield the particle's total time with r_y > 0 

<span>2.24 s

I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span></span>
6 0
3 years ago
Which is an example of projectile motion?
stiv31 [10]
A person throwing a rock
5 0
4 years ago
Read 2 more answers
this is a 3 part questionOn vacation, your 1400-kg car pulls a 560-kg trailer away from a stoplight with an acceleration of 1.85
mamaluj [8]

ANSWER:

(a) 1036 N

(b) -1036 N

(c) 2590 N

STEP-BY-STEP EXPLANATION:

Given:

Mc = 1400 kg

Mt = 560 kg

a = 1.85 m/s^2

(a)

Force by car on trailer:

\begin{gathered} F_c=m\cdot a \\ F_c=560\cdot1.85 \\ F_c=1036\text{ N} \end{gathered}

(b)

\begin{gathered} F_t=-F_c \\ F_t=-1036\text{ N} \end{gathered}

(c)

\begin{gathered} F_n=1400\cdot1.85 \\ F_n=2590\text{ N} \end{gathered}

3 0
1 year ago
A trombone has a variable length. When a musician blows into the mouthpiece and causes air in the tube of the horn to vibrate, t
Lilit [14]

Answer:

The frequency increases.

Explanation:

When the Musician draws the slide in the length of the horn gets shorter, which causes a decrease in the wavelength. A decrease in the wave length results in an increase in frequency.

Note:

The diameter of the horn has an effect on frequency, so a wider horn is effectively a long horn - open end correction ( distance between the the antinode and the open end of a pipe).

Frequency also depends on how hard the musician blows the trombone. The musician can change the frequency with the lip pressure being applied.

6 0
3 years ago
A charge is divided q1 and (q-q1)what will be the ratio of q/q1 so that force between the two parts placed at a given distance i
Arturiano [62]

Answer:

q / q_{1} = 2, assuming that q_{1} and (q - q_{1}) are point charges.

Explanation:

Let k denote the coulomb constant. Let r denote the distance between the two point charges. In this question, neither k and r depend on the value of q_{1}.

By Coulomb's Law, the magnitude of electrostatic force between q_{1} and (q - q_{1}) would be:

\begin{aligned}F &= \frac{k\, q_{1}\, (q - q_{1})}{r^{2}} \\ &= \frac{k}{r^{2}}\, (q\, q_{1} - {q_{1}}^{2})\end{aligned}.

Find the first and second derivative of F with respect to q_{1}. (Note that 0 < q_{1} < q.)

First derivative:

\begin{aligned}\frac{d}{d q_{1}}[F] &= \frac{d}{d q_{1}} \left[\frac{k}{r^{2}}\, (q\, q_{1} - {q_{1}}^{2})\right] \\ &= \frac{k}{r^{2}}\, \left[\frac{d}{d q_{1}} [q\, q_{1}] - \frac{d}{d q_{1}}[{q_{1}}^{2}]\right]\\ &= \frac{k}{r^{2}}\, (q - 2\, q_{1})\end{aligned}.

Second derivative:

\begin{aligned}\frac{d^{2}}{{d q_{1}}^{2}}[F] &= \frac{d}{d q_{1}} \left[\frac{k}{r^{2}}\, (q - 2\, q_{1})\right] \\ &= \frac{(-2)\, k}{r^{2}}\end{aligned}.

The value of the coulomb constant k is greater than 0. Thus, the value of the second derivative of F with respect to q_{1} would be negative for all real r. F\! would be convex over all q_{1}.

By the convexity of \! F with respect to \! q_{1} \!, there would be a unique q_{1} that globally maximizes F. The first derivative of F\! with respect to q_{1}\! should be 0 for that particular \! q_{1}. In other words:

\displaystyle \frac{k}{r^{2}}\, (q - 2\, q_{1}) = 0<em>.</em>

2\, q_{1} = q.

q_{1} = q / 2.

In other words, the force between the two point charges would be maximized when the charge is evenly split:

\begin{aligned} \frac{q}{q_{1}} &= \frac{q}{q / 2} = 2\end{aligned}.

3 0
3 years ago
Other questions:
  • In a plant cell where is sunlight converted to stored energy where does photosynthesis occur
    10·2 answers
  • You have a lens whose focal length is 6.91 cm. You place an object on the axis of the lens at a distance of 11.1 cm from it. How
    10·1 answer
  • What happens when you combine purple and yellow?
    10·1 answer
  • At what point in its swing is potential energy a maximum?<br> E<br> B<br> D<br> A<br> C
    13·1 answer
  • Which of the following defines the Permian Triassic​
    9·1 answer
  • Which of the following are equivalent units?
    10·2 answers
  • Explain how tangential speed depends on distance.
    10·1 answer
  • Which is NOT an INHERITED TRAIT?
    15·2 answers
  • Which of the following is required for U.S. citizens to travel outside the United States?
    13·1 answer
  • What is used to measure the amount of sunshine ​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!