Answer:
Metallic bonding may be described as the sharing of free electrons among a lattice of positively charged metal ions. The structure of metallic bonds is very different from that of covalent and ionic bonds. ... In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize.
The electron configuration of lithium atom is:
![Li:[He]2s^1](https://tex.z-dn.net/?f=Li%3A%5BHe%5D2s%5E1)
The number "2" is the value of the principal quantum number "n". Letter "s" is associated with the value of secondary quantum number "l" and it is equal to zero. The value of "m" (or magnetic quantum number) is zero too. The quantum number set for the highest energy electron will be (2, 0, 0, 1/2).
Answer:
800 lb of pure solvent , 1700 lb of 20% solution and 500 lb of 10% solution will be mixed to form 3000 lb of 13 % solution .
Explanation:
3000 lb of 13% solution is required .
Total adhesive in weight = 3000 x .13 = 390 lb of adhesive
Available = 500 lb of 10% solution = 50 lb of adhesive
Rest = 390 - 50 = 340 lb required .
rest mass of solution = 3000 - 500 = 2500 lb
mass of adhesive required = 340 lb
Let the mass of 20% required be V
mass of adhesive = .20 V
.20 V = 340
V = 1700
rest of the volume = 2500 - 1700 = 800 lb which will be of pure solvent
So 800 lb of pure solvent , 1700 lb of 20% solution and 500 lb of 10% solution will be mixed to form 3000 lb of 13 % solution .