Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
Answer:
The potential difference between the plates is 596.2 volts.
Explanation:
Given that,
Capacitance 
Charge 
Separation of plates = 0.313 mm
We need to calculate the potential difference between the plates
Using formula of potential difference

Where, Q = charge
C = capacitance
Put the value into the formula


Hence,The potential difference between the plates is 596.2 volts.
Answer:
Distance= 2.3864m
Explanation:
So that the balance is in equilibrium parallel to the floor, we must match the moment each man makes with respect to the pivot point.
In many cases the point of application of force does not coincide with the point of application in the body. In this case the force acts on the object and its structure at a certain distance, by means of an element that transfers that action of this force to the object.
This combination of force applied by the distance to the point of the structure where it is applied is called the moment of force F with respect to the point. The moment will attempt a rotation shift or rotation of the object. The distance from the force to the point of application is called the arm.
Mathematically it is calculated by expression:
M= F×d
The moment caused by the first man is:
M1= 75kg × (9.81m/s²) × 1.75m= 1287.5625 N×m
The moment caused by the second man must be equal to that caused by the first by which:
M2= 1287.5625 N×m= 55kg × (9.81m/s²) × distance ⇒
⇒distance= (1287.5625 N×m)/( (55kg × (9.81m/s²) )= 2.3864m
At this distance from the pivot point, the second should sit down so that the balance is balanced parallel to the ground.
Answer:
according to this question best answer is C
Answer:
Lorsque l'on détend l'air son volume augmente et sa pression diminue. L'air qui est un mélange de gaz est compressible et expansible. – Lorsque l'on comprime l'air, son volume diminue et sa pression augmente. – Lorsque l'on détend l'air, son volume augmente et sa pression diminue.