Explanation:
the air particales are always moving so it also takes the smell of the chesse with it and sreads everywhere in the house.
Answer:
Option D. 0.115 M
Explanation:
The following data were obtained from the question:
Mass of CuSO4 = 36.8 g
Volume of solution = 2 L
Molar mass of CuSO4 = 159.62 g/mol
Molarity of CuSO4 =..?
Next, we shall determine the number of mole in 36.8 g of CuSO4.
This can be obtained as shown below:
Mass of CuSO4 = 36.8 g
Molar mass of CuSO4 = 159.62 g/mol
Mole of CuSO4 =.?
Mole = mass /Molar mass
Mole of CuSO4 = 36.8 / 159.62
Mole of CuSO4 = 0.23 mole
Finally, we shall determine the molarity of the CuSO4 solution as illustrated below:
Mole of CuSO4 = 0.23 mole
Volume of solution = 2 L
Molarity of CuSO4 =..?
Molarity = mole /Volume
Molarity of CuSO4 = 0.23 / 2
Molarity of CuSO4 = 0.115 M
Therefore, the molarity of the CuSO4 solution is 0.115 M.
Answer: pH = 14
Explanation: Please see the attachments below
Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>