Answer:
Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen, and is a fuming red-brown liquid at room temperature that evaporates readily to form a similarly colored gas.
Missing data in your question: (please check the attached photo)
from this balanced equation:
M(OH)2(s) ↔ M2+(aq) + 2OH-(aq) and when we have Ksp = 2x10^-16
∴Ksp = [M2+][OH]^2
2x10^-16 = [M2+][OH]^2
a) SO at PH = 7 ∴POH = 14-PH = 14- 7 = 7
when POH = -㏒[OH]
7= -㏒[OH]
∴[OH] = 1x10^-7 m by substitution with this value in the Ksp formula,
∴[M2+] =Ksp /[OH]^2
= (2x10^-16)/(1x10^-7)^2
= 0.02 M
b) at PH =10when POH = 14- PH = 14-10 = 4
when POH = -㏒[OH-]
4 = -㏒[OH-]
∴[OH] = 1x10^-4 ,by substitution with this value in the Ksp formula
[M2+] = Ksp/ [OH]^2
= 2x10^-16 / (1x10^-4)^2
= 2x10^-8 Mc) at PH= 14
when POH = 14-PH
= 14 - 14
= 0
when POH = -㏒[OH]
0 = - ㏒[OH]
∴[OH] = 1 m
by substitution with this value in Ksp formula :
[M2+] = Ksp / [OH]^2
= (2x10^-16) / 1^2
= 2x10^-16 M
You would calculate them by dividing them and then multiplying to get the final answer
Answer:

Explanation:
For this question, we must use Dalton's Law of Partial Pressures:
The partial pressure of a gas in a mixture of gases equals its mole fraction times the total pressure:

Data:
χ = 0.7808

Calculation:

Answer:
2HCl + Ba(OH)2 = BaCl2 + 2H2O
Explanation: