<u>Answer:</u> The temperature of the system is 273 K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of carbon dioxide = 1 lb = 453.6 g (Conversion factor: 1 lb = 453.6 g)
Molar mass of carbon dioxide = 44 g/mol
Putting values in above equation, we get:

To calculate the temperature of gas, we use the equation given by ideal gas equation:
PV = nRT
where,
P = Pressure of carbon dioxide = 200 psia = 13.6 atm (Conversion factor: 1 psia = 0.068 atm)
V = Volume of carbon dioxide =
(Conversion factor:
)
n = number of moles of carbon dioxide = 10.31 mol
R = Gas constant = 
T = temperature of the system = ?
Putting values in above equation, we get:

Hence, the temperature of the system is 273 K
White phosphorus melts and then vaporizes at high temperatures. The gas effuses at a rate that is 0.404 times that of neon in the same apparatus under the same conditions-There are 4 atoms of P in the molecule
Explanation:
Ar=30,97g/mol
/
=
=0,404
0,404=
=20,18/30,97*x
X=20,18/30,97*0,163
X=4
There are 4 atoms of P in the molecule
White phosphorus melts and then vaporizes at high temperatures. The gas effuses at a rate that is 0.404 times that of neon in the same apparatus under the same conditions-There are 4 atoms of P in the molecule
Answer:
Hydrogen peroxide can function as an oxidizing agent as well as reducing agent.
H2O2 act as oxidizing agent in acidic medium.
Explanation:
Example : 2FeSO4 +H2SO4 +H2O2 —>
(ferrous sulphate)
Fe2(SO4)3 +2H2O
(ferric sulphate)
Answer:
3.8 x 10²⁴molecules
Explanation:
Given parameters:
Number of moles = 6.32moles
Unknown:
Number of molecules = ?
Solution:
The number of moles can be used to derive the number of molecules found within a substance.
Now,
1 mole of substance contains 6.02 x 10²³ molecules
6.32 mole of PBr₃ will contain 6.32 x 6.02 x 10²³ = 3.8 x 10²⁴molecules
Graphite conduct electricity because it contains delocalize election (free election ) the election move through the graphite