Answer:
The Photosynthesis process
Explanation:
Plants, algae, and some other organisms can transform the sunlight energy into chemical energy. The photosynthesis process occur thanks to the chloroplasts. The chloroplast is an organelle found in all green plants. Inside of the chloroplast you can find the thylakoids which are arranged in stacks named grana, they have membranes with chloropyll a photosynthetic pigment, also you can find the photosystems, they are functional and structural units of protein complexes. The thylakoids capture the light and allow the reactions to transform CO2. The set of reactions that occurs in the chloroplasts are known as the Calvin cycle.
The general equation of photosynthesis is:

6 CO2 + 6 H2O + Energy -> C6H12O6 + 6 O2
Carbon Dioxide + water + Light -> Glucose (sugar) + Oxygen
After, this glucose is transformed into pyruvate, and it allowed the release of denosine triphosphate (ATP) by cellular respiration. The ATP is an organic chemical that is requires for the cell to perform any process (any kind or work).
The balanced chemical reaction is:
<span>Ca + Cl2 = CaCl2
</span>
We are given the amount of calcium metal to be used for this reaction. This will be the starting point for the calculations.
56 g Ca ( 1 mol Ca / 40.08 g Ca) (1 mol Cl2 / 1 mol Ca) ( 22.414 L Cl2 / 1 mol Cl2 ) = 31.32 L Cl2 gas produced from the reaction
<span>Let's </span>assume that the gas has ideal gas behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹)
and T is temperature in Kelvin.<span>
<span>
</span>P = 60 cm Hg = 79993.4 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³
n = ?
<span>
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 25 °C = 298 K
<span>
By substitution,
</span></span>79993.4 Pa<span> x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 298 K<span>
n = 4.0359 x 10</span>⁻³ mol
<span>
Hence, moles of the gas</span> = 4.0359 x 10⁻³ mol<span>
Moles = mass / molar
mass
</span>Mass of the gas = 0.529 g
<span>Molar mass of the gas</span> = mass / number of moles<span>
= </span>0.529 g / 4.0359 x 10⁻³ mol<span>
<span> = </span>131.07 g mol</span>⁻¹<span>
Hence, the molar mass of the given gas is </span>131.07 g mol⁻¹
Answer:
B) is reduced.
Explanation:
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced and it is oxidizing agent.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized and it is reducing gent.
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized.