Answer:
Freezing
Explanation:
When a liquid goes to a solid, this process is called freezing.
Answer : The final pressure of the gas will be, 26.8 kPa
Explanation :
According to the Boyle's law, the pressure of the gas is inversely proportional to the volume of the gas at constant temperature of the gas and the number of moles of gas.
![P\propto \frac{1}{V}](https://tex.z-dn.net/?f=P%5Cpropto%20%5Cfrac%7B1%7D%7BV%7D)
or,
![PV=k](https://tex.z-dn.net/?f=PV%3Dk)
or,
![P_1V_1=P_2V_2](https://tex.z-dn.net/?f=P_1V_1%3DP_2V_2)
where,
= initial pressure of the gas = 209 kPa
= final pressure of the gas = ?
= initial volume of the gas = 10.0 L
= final volume of the gas = 78.0 L
Now put all the given values in this formula, we get the final pressure of the gas.
![209kPa\times 10.0L=P_2\times 78.0L](https://tex.z-dn.net/?f=209kPa%5Ctimes%2010.0L%3DP_2%5Ctimes%2078.0L)
![P_2=26.8kPa](https://tex.z-dn.net/?f=P_2%3D26.8kPa)
Therefore, the final pressure of the gas will be, 26.8 kPa
Explanation:
a) when zinc burnt in oxygen.
2Zn + O2 -----∆-----> 2ZnO(black residue)
b) when carbon burnt in oxygen.
C+O2----∆---> CO2.
c) when sulphur burnt in oxygen.
S+O2-----∆-----> SO2.
d) when Calcium burnt in oxygen.
2Ca+O2-----∆-----> 2CaO(black residue)
e) when Magnesium burnt in oxygen.
2Mg+O2-----∆----> 2MgO.
f) when sodium burnt in oxygen.
4Na+O2----∆-----> 2Na2O.
hope all these reactions help you.
Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation:
This is a case of metric system of measurements. The scale of the metric system only differs by a factor of 10. The scale (from greatest to least) is kiloliter, hectoliter, dekaliter, liter, deciliter, centiliter and milliliter. If the unit is 150 dL, and you want to find the equivalent dkL measurement, just move the decimal point 2 decimals places to the left (just follow the scale). The same procedure is done for the other metric units.
150 dL = 1.5 dkL
150 dL = 15 L
150 dL = 1,500 cL
150 dL = 15,000 mL
From the choices, the answer is letter C.