Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
Answer:
2 E16 Hz or 2 * 10^16 Hz
Explanation:
The formula to determine frequency is f = c / λ.
f = frequency
c = speed of light
λ = wavelength
f = 3E8 / 1.5E-8
f = 2E16
This makes sense because UV light exists roughly
between 8E14 Hz and 3E16 Hz ----- 2E16 Hz falls in that range
Answer: The element shown in the image is Helium (He).
Explanation: We are given a image of an atom having protons, neutrons and electrons.
Number of protons as shown in image = 2
Number of neutrons as shown in image = 2
Number of electron as shown in image = 2
Atomic number = Number of protons = Number of electrons
Atomic number of the element = 2
Atomic Mass = Number of protons + Number of neutrons
Atomic mass = 2 + 2 = 4
The element having Atomic number = 2 and mass number = 4 is Helium.
Element = 
B)a force pushed the rock layers after they were formed
Dimension analysis is to be used to solve this problem. First convert 1L to milliliters. That is equivalent to 1000 ml. Then by dimension analysis, multiply the volume ( 1000ml) to the density of oil (0.92 g/ml) resulting to the answer: 920 grams.