1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
likoan [24]
4 years ago
8

can someone please answer my last question I posted? On my last post? My hw is due tomorrow and I’m confused.

Physics
1 answer:
Aleonysh [2.5K]4 years ago
3 0
Yes I will, I’m going right now
You might be interested in
The internal structure of the earth consists of three main layers. Starting from the center of the earth and moving outward, the
fgiga [73]
The crust, Mantle, and Core
Hope this helped! :3
6 0
4 years ago
Read 2 more answers
Draw equipotential lines near the positive and negative charges below with dashed lines. b) Draw solid electric field lines base
pychu [463]

Answer: find the attached figure for a and b

Explanation:

A) The second figure depict electric field lines and equipotential lines for two equal but opposite charges. The equipotential lines can be drawn by making them perpendicular to the electric field lines. The potential is greatest (most positive) near the positive charge and least (most negative) near the negative charge.

B) The figure attached depicts an isolated point charge Q with its electric field lines in blue and equipotential lines in green. The potential is the same along each equipotential line, meaning that no work is required to move a charge anywhere along one of those lines. Work is needed to move a charge from one equipotential line to another. Equipotential lines are perpendicular to electric field lines in every case.

Please find the attached file for the figure

5 0
3 years ago
A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the
Mariana [72]

a) F=\frac{\mu_k mg}{cos \theta - \mu_k sin \theta}

Here the crate is moving at constant velocity, so no acceleration:

a = 0

Let's analyze the forces acting along the horizontal and vertical direction.

- Vertical direction: the equation of the forces is

R-Fsin \theta - mg = 0 (1)

where

R is the normal reaction of the floor (upward)

F sin \theta is the component of the force F in the vertical direction (downward)

mg is the weight of the crate (downward)

- Horizontal direction: the equation of the forces is

F cos \theta - \mu_k R = 0 (2)

where

F cos \theta is the horizontal component of the force F (forward)

\mu_k R is the force of friction (backward)

From (1) we get

R=Fsin \theta +mg

And substituting into (2)

F cos \theta - \mu_k (Fsin \theta +mg) = 0\\F cos \theta -\mu _k F sin \theta = \mu_k mg\\F(cos \theta - \mu_k sin \theta) = \mu_k mg\\F=\frac{\mu_k mg}{cos \theta - \mu_k sin \theta}

b) \mu_s=cot(\theta)

In this second case, the crate is still at rest, so we have to consider the static force of friction, not the kinetic one.

The equations of the forces will be:

R-Fsin \theta - mg = 0 (1)

F cos \theta - \mu_s R = 0 (2)

In this second case, we want to find the critical value of \mu_s such that the woman cannot start the crate: this means that the force of friction must be at least equal to the component of the force pushing on the horizontal direction, F cos \theta.

Therefore, using the same procedure as before,

R=Fsin \theta +mg

F cos \theta - \mu_s (Fsin \theta +mg) = 0

And solving for \mu_s,

F cos \theta = \mu_s (Fsin \theta +mg) \\\mu_s = \frac{F cos \theta}{F sin \theta + mg}

Now we analyze the expression that we found. We notice that if the force applied F is very large, F sin \theta >> mg, therefore we can rewrite the expression as

\mu_s \sim \frac{F cos \theta}{F sin \theta}\\\mu_s=cot(\theta)

So, this is the critical value of the coefficient of static friction.

8 0
3 years ago
Water runs through a plumbing with a flow of 0.750m3/s and arrives to every exit of a fountain. At what speed will the water com
Lubov Fominskaja [6]

Divide the flow rate (0.750 m³/s) by the cross-sectional area of each pipe:

diameter = 40 mm   ==>   area = <em>π</em> (0.04 m)² ≈ 0.00503 m²

diameter = 120 mm   ==>   area = <em>π</em> (0.12 m)² ≈ 0.0452 m²

Then the speed at the end of the 40 mm pipe is

(0.750 m³/s) / (0.00503 m²) ≈ 149.208 m/s ≈ 149 m/s

(0.750 m³/s) / (0.0452 m²) ≈ 16.579 m/s ≈ 16.6 m/s

7 0
3 years ago
I'll give brainliest if you give me a good awnser. :)
lbvjy [14]

Answer:

0.5

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Use what you know about mass and how you use it to calculate force in the following situation. If each washer has a mass of 4.9
    15·2 answers
  • The Earth and the Moon are attracted to each other by universal gravitation. The Earth is much more massive than is the Moon. Do
    9·1 answer
  • Pistons are fitted to two cylindrical chambers connected through a horizontal tube to form a hydraulic system. The piston chambe
    8·1 answer
  • How were lion fish introduced to the areas around Florida
    15·2 answers
  • A musical tone sounded on a pi has frequency of 410 Hz and a wavelength of 0.80 m.
    13·1 answer
  • The orbit of the moon around Earth is possible because of which property?
    5·1 answer
  • How is the potential difference same in capacitors arranged in parallel combination?​
    14·1 answer
  • Please help me solve this and give an explanation​
    6·1 answer
  • A potter’s wheel moves from rest to an angular speed of 0.40 rev/s in 37.5 s.
    14·1 answer
  • a radio station's channel, such as 100.7 fm or 92.3 fm, is actually its frequency in megahertz ( mhz ), where 1mhz
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!