1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zina [86]
3 years ago
13

Water drops fall from the edge of a roof at a steady rate. a fifth drop starts to fall just as the first drop hits the ground. a

t this instant, the second and third drops are exactly at the bottom and top edges of a 1.00-m-tall window. how high is the edge of the roof?

Physics
2 answers:
Alchen [17]3 years ago
8 0

The height of the roof is <u>3.57m</u>

Let the drops fall at a rate of 1 drop per t seconds. The first drop takes 5t seconds to reach the ground. The second drop takes 4t seconds to reach the bottom of the 1.00 m window, while the 3rd drop takes 3t s to reach the top of the window.

Calculate the distances traveled by the second and the third drops s₂ and s₃, which start from rest from the roof of the building.

s_2=\frac{1}{2} g(4t)^2=8gt^2\\  s_3=\frac{1}{2} g(3t)^2=(4.5)gt^2

The length of the window s is given by,

s=s_2-s_3\\ (1.00 m)=8gt^2-4.5gt^2=3.5gt^2\\ t^2=\frac{1.00 m}{(3.5)(9.8m/s^2)} =0.02915s^2

The first drop is at the bottom and it takes 5t seconds to reach down.

The height of the roof h is the distance traveled by the first drop and is given by,

h=\frac{1}{2} g(5t)^2=\frac{25t^2}{2g} =\frac{25(0.02915s^2)}{2(9.8m/s^2)} =3.57 m

the height of the roof is 3.57 m



vladimir2022 [97]3 years ago
7 0

The height of the edge of the roof is \boxed{3.57\text{ m}} or \boxed{357\text{ cm}}.

Further explanation:

When drops fall from the edge of a roof at a steady rate, the rate of flow does not change with time. Each drops take same time to fall from the edge. If a drop is at the verge of fall, surface tension will balance the weight of the drop.

When surface tension reaches to its extreme value and weight of the drop exceeds the maximum value of surface tension, water drop will fall from the edge of a roof.

Given:

The height of the window is 1\text{ m}.

Concept:

Let the rate at which drops fall from the edge of a roof is 1 drop per t\text{ sec}.

The rate 1 drop per t\text{ sec} indicates that after every t\text{ sec} one drop falls from the edge of a roof.  

The time taken by first drop to reach ground is 4t.

Time taken by second drop to reach at the bottom of the window is 3t.

Time taken by third drop to reach at the top of the window is 2t.

During the whole time when drop is in air, it is subjected to a gravitational pull. So, the acceleration of each drop will be g in downward direction.

The second equation of motion is:  

s=ut+\frac{1}{2}a{t^2}  

For free fall.  

\begin{aligned}u&=0 \hfill \\s&=- h \hfill \\a&=- g \hfill \\ \end{aligned}  

Negative sign is taken for h as drop travels in the negative direction of y axis.

h=\frac{1}{2}g{t^2}                                       …… (1)

For second drop.

\begin{aligned}{h_2}&=\frac{1}{2}g{\left( {4t} \right)^2} \\&=8g{t^2} \\ \end{aligned}  

For third drop.

\begin{aligned}{h_3}&=\frac{1}{2}g{\left( {3t} \right)^2} \\&=4.5g{t^2} \\ \end{aligned}

 

The difference of h_2 and h_3 will be the length of the window 1\text{ m}.

{h_2}-{h_3}=1\,{\text{m}}

Substitute the values.

\begin{aligned}8g{t^2} - 4.5g{t^2}&=1\,{\text{m}} \hfill \\{\text{3}}{\text{.5g}}{{\text{t}}^2}&=1\,{\text{m}} \hfill \\3.5\left( {9.81\,{\text{m/}}{{\text{s}}^{\text{2}}}} \right){t^2}&=1\,{\text{m}} \hfill \\ \end{aligned}

Simplify the above expression for {t^2}.  

\begin{aligned}{{\text{t}}^2}&=\frac{{1{\kern 1pt} {\text{m}}}}{{3.5\left( {9.81{\kern 1pt} {\text{m/}}{{\text{s}}^{\text{2}}}} \right)}} \\&=0.02913\,{{\text{s}}^{\text{2}}} \\ \end{aligned}  

For first drop.

\begin{aligned}{h_1}&=\frac{1}{2}g{\left( {5t} \right)^2} \\&=12.5\,g{t^2} \\&=\left( {12.5} \right)\left( {9.81\,{\text{m/}}{{\text{s}}^{\text{2}}}} \right)\left( {0.02913\,{{\text{s}}^{\text{2}}}} \right) \\&=3.57\,{\text{m}} \\ \end{aligned}  

h_1 will be the height of the roof from ground.

Thus, the height of the edge of the roof is \boxed{3.57\text{ m}} or \boxed{357\text{ cm}}.

Learn More:

1.  The motion of a body under friction brainly.com/question/4033012

2.  A ball falling under the acceleration due to gravity brainly.com/question/10934170

3. Conservation of energy brainly.com/question/3943029

Answer Details:

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords:

Water, drops, edge, roof, steady rate, fifth, starts, fall, just, hits, ground, instant, second, third, fourth, exactly, bottom, top, 1.00 m, tall, 100 cm, 1.00 meter, 1 meter, height, window, 3.57 m, 3.57 meter, 357 cm.

You might be interested in
If i have no swag and i dab what happens
vlabodo [156]
You earn swag points.
7 0
3 years ago
Read 2 more answers
What formula is used to calculate resistance using the color code?
jolli1 [7]
<span><em>The answer is </em><em>A</em><em> :</em><em>" R = (First digit * 10 + second digit) * multiplier. "

</em>
<em>yw peasant XD</em><em>
</em>
</span>
5 0
3 years ago
An experimenter finds that standing waves on a string fixed at both ends occur at 24 Hz and 32 Hz , but at no frequencies in bet
Vera_Pavlovna [14]

Answer:

8 Hz

Explanation:

Given that

Standing wave at one end is 24 Hz

Standing wave at the other end is 32 Hz.

Then the frequency of the standing wave mode of a string having a length, l, is usually given as

f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc

Also, another formula is given as

f(m) = m.f(1), where f(1) is the fundamental frequency..

Thus, we could say that

f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)

And as such,

f(1) = 32 - 24

f(1) = 8 Hz

Then, the fundamental frequency needed is 8 Hz

4 0
3 years ago
Sound travels slowest through gas because the atoms in a gas are further apart than the other states of matter.
Tanzania [10]

Answer:

false

Explanation:

If they were farther apart they would be able to slip by through which means that it can go by faster. If the atoms where closer together then yes they would be able to go by slower.

8 0
3 years ago
What is a single cell organism able to do?
Sunny_sXe [5.5K]
Survived on its own.
7 0
3 years ago
Read 2 more answers
Other questions:
  • the human nervous system can propagate nerve impulses at about 10 squared metered per second. estimate the time it takes to trav
    14·2 answers
  • A clever inventor has created a device that can launch water balloons with an initial speed of 85.0 m/s. Her goal is to pass a b
    8·1 answer
  • A burning candle is covered by a jar as shown in the picture. The whole arrangement has a mass of 500 g. What will be the approx
    15·2 answers
  • at 1 p.m. a car traveling at a constant velocity of 78 km per hour towards the West it's 34 km to the west of our school how far
    9·1 answer
  • A child sits on a dock and notices that 8 wavelengths pass the end of the dock in 4 seconds. What is the
    5·1 answer
  • How is the atomic number of a nucleus changed by alpha decay?
    9·1 answer
  • What is 2+2 is 4 - 1 =??<br><br><br><br> Know your memes!
    5·2 answers
  • (A) The figure shows the setup which is used to observe an image formed wen a lighted candle is kept in front of a bi convex len
    13·1 answer
  • Why should I care about children in Haiti that are being targeted by Haitian gangs?
    10·1 answer
  • A girl stand 5m away from a large plane mirror.How far must she walk ti be 2m away from her image?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!