1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zina [86]
4 years ago
13

Water drops fall from the edge of a roof at a steady rate. a fifth drop starts to fall just as the first drop hits the ground. a

t this instant, the second and third drops are exactly at the bottom and top edges of a 1.00-m-tall window. how high is the edge of the roof?

Physics
2 answers:
Alchen [17]4 years ago
8 0

The height of the roof is <u>3.57m</u>

Let the drops fall at a rate of 1 drop per t seconds. The first drop takes 5t seconds to reach the ground. The second drop takes 4t seconds to reach the bottom of the 1.00 m window, while the 3rd drop takes 3t s to reach the top of the window.

Calculate the distances traveled by the second and the third drops s₂ and s₃, which start from rest from the roof of the building.

s_2=\frac{1}{2} g(4t)^2=8gt^2\\  s_3=\frac{1}{2} g(3t)^2=(4.5)gt^2

The length of the window s is given by,

s=s_2-s_3\\ (1.00 m)=8gt^2-4.5gt^2=3.5gt^2\\ t^2=\frac{1.00 m}{(3.5)(9.8m/s^2)} =0.02915s^2

The first drop is at the bottom and it takes 5t seconds to reach down.

The height of the roof h is the distance traveled by the first drop and is given by,

h=\frac{1}{2} g(5t)^2=\frac{25t^2}{2g} =\frac{25(0.02915s^2)}{2(9.8m/s^2)} =3.57 m

the height of the roof is 3.57 m



vladimir2022 [97]4 years ago
7 0

The height of the edge of the roof is \boxed{3.57\text{ m}} or \boxed{357\text{ cm}}.

Further explanation:

When drops fall from the edge of a roof at a steady rate, the rate of flow does not change with time. Each drops take same time to fall from the edge. If a drop is at the verge of fall, surface tension will balance the weight of the drop.

When surface tension reaches to its extreme value and weight of the drop exceeds the maximum value of surface tension, water drop will fall from the edge of a roof.

Given:

The height of the window is 1\text{ m}.

Concept:

Let the rate at which drops fall from the edge of a roof is 1 drop per t\text{ sec}.

The rate 1 drop per t\text{ sec} indicates that after every t\text{ sec} one drop falls from the edge of a roof.  

The time taken by first drop to reach ground is 4t.

Time taken by second drop to reach at the bottom of the window is 3t.

Time taken by third drop to reach at the top of the window is 2t.

During the whole time when drop is in air, it is subjected to a gravitational pull. So, the acceleration of each drop will be g in downward direction.

The second equation of motion is:  

s=ut+\frac{1}{2}a{t^2}  

For free fall.  

\begin{aligned}u&=0 \hfill \\s&=- h \hfill \\a&=- g \hfill \\ \end{aligned}  

Negative sign is taken for h as drop travels in the negative direction of y axis.

h=\frac{1}{2}g{t^2}                                       …… (1)

For second drop.

\begin{aligned}{h_2}&=\frac{1}{2}g{\left( {4t} \right)^2} \\&=8g{t^2} \\ \end{aligned}  

For third drop.

\begin{aligned}{h_3}&=\frac{1}{2}g{\left( {3t} \right)^2} \\&=4.5g{t^2} \\ \end{aligned}

 

The difference of h_2 and h_3 will be the length of the window 1\text{ m}.

{h_2}-{h_3}=1\,{\text{m}}

Substitute the values.

\begin{aligned}8g{t^2} - 4.5g{t^2}&=1\,{\text{m}} \hfill \\{\text{3}}{\text{.5g}}{{\text{t}}^2}&=1\,{\text{m}} \hfill \\3.5\left( {9.81\,{\text{m/}}{{\text{s}}^{\text{2}}}} \right){t^2}&=1\,{\text{m}} \hfill \\ \end{aligned}

Simplify the above expression for {t^2}.  

\begin{aligned}{{\text{t}}^2}&=\frac{{1{\kern 1pt} {\text{m}}}}{{3.5\left( {9.81{\kern 1pt} {\text{m/}}{{\text{s}}^{\text{2}}}} \right)}} \\&=0.02913\,{{\text{s}}^{\text{2}}} \\ \end{aligned}  

For first drop.

\begin{aligned}{h_1}&=\frac{1}{2}g{\left( {5t} \right)^2} \\&=12.5\,g{t^2} \\&=\left( {12.5} \right)\left( {9.81\,{\text{m/}}{{\text{s}}^{\text{2}}}} \right)\left( {0.02913\,{{\text{s}}^{\text{2}}}} \right) \\&=3.57\,{\text{m}} \\ \end{aligned}  

h_1 will be the height of the roof from ground.

Thus, the height of the edge of the roof is \boxed{3.57\text{ m}} or \boxed{357\text{ cm}}.

Learn More:

1.  The motion of a body under friction brainly.com/question/4033012

2.  A ball falling under the acceleration due to gravity brainly.com/question/10934170

3. Conservation of energy brainly.com/question/3943029

Answer Details:

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords:

Water, drops, edge, roof, steady rate, fifth, starts, fall, just, hits, ground, instant, second, third, fourth, exactly, bottom, top, 1.00 m, tall, 100 cm, 1.00 meter, 1 meter, height, window, 3.57 m, 3.57 meter, 357 cm.

You might be interested in
A car traveling south is 200 kilometers from its starting point after 2 hours. What is the average velocity of the car?
MakcuM [25]
The velocity of the car would be 100 kilometer per hour.
6 0
3 years ago
Read 2 more answers
A car is traveling at 96km/hr. what is the acceleration of a car traveling a distance of 100m and come to rest?​
8090 [49]

Answer:

Explanation:

v² = u² + 2as

v = 0

u = 96 / 3.6 = 26.7 m/s

0² = 26.7² + 2a100

a = -3.5555555... ≈ -3.6 m/s²

the negative sign indicated the acceleration vector opposes the (assumed positive) initial velocity vector direction.

6 0
3 years ago
Check my work please
katrin [286]

We can use the ideal gas equation which is expressed as PV = nRT. At a constant volume and number of moles of the gas the ratio of T and P is equal to some constant. At another set of condition, the constant is still the same. Calculations are as follows:

T1/P1 = T2/P2

P2 = T2 x P1 / T1

P2 = 273 x 340 / 713

<span>P2 = 130 kPa</span>

6 0
3 years ago
Does heating a cup of<br> Water allow it to dissolve more sugar ? Constant
Anestetic [448]

Answer:

Explanation:

Yes

5 0
3 years ago
Read 2 more answers
a ball is dropped and falls with an acceleration of 9.8m/s^2 downward. it hits the ground with a velocity of 49m/s downward. how
yaroslaw [1]
The answer below...........

8 0
3 years ago
Other questions:
  • In order for a reaction to begin, what is required?
    5·2 answers
  • Which statement best describes the relationship between work and energy?
    10·1 answer
  • A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of
    9·1 answer
  • A car went 60 km in 5/6 of an hour while a second car went 54 km in 2/3h. Which car was faster? How many times faster?
    15·1 answer
  • 9) Because of friction A) energy is NOT always conserved. B) NOT all potential energy is converted to kinetic energy. C) all of
    5·2 answers
  • Vitellium (Vi) has the following composition:
    15·1 answer
  • A navigational beacon in deep space broadcasts at a radio frequency of 50 MHz. A spaceship approaches the beacon with a relative
    6·1 answer
  • Which statement describes the path of electrons from a battery to a circuit?
    8·2 answers
  • How can you get acceleration when talking about speed?
    9·1 answer
  • Need help asap please!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!