Explanation: As the angle is increased the acceleration of the object is increased as the angle increases the component of the force parallel to the incline increases and the component of forced perpendicular to the inclined decreases it is the parallel component of the weight vector that causes the acceleration.
Answer: 116.926 km/h
Explanation:
To solve this we need to analise the relation between the car and the Raindrops. The cars moves on the horizontal plane with a constant velocity.
Car's Velocity (Vc) = 38 km/h
The rain is falling perpedincular to the horizontal on the Y-axis. We dont know the velocity.
However, the rain's traces on the side windows makes an angle of 72.0° degrees. ∅ = 72°
There is a relation between this angle and the two velocities. If the car was on rest, we will see that the angle is equal to 90° because the rain is falling perpendicular. In the other end, a static object next to a moving car shows a horizontal trace, so we can use a trigonometric relation on this case.
The following equation can be use to relate the angle and the two vectors.
Tangent (∅) = Opposite (o) / adjacent (a)
Where the Opposite will be the Rain's Vector that define its velocity and the adjacent will be the Car's Velocity Vector.
Tan(72°) = Rain's Velocity / Car's Velocity
We can searching for the Rain's Velocity
Tan(72°) * Vc = Rain's Velocity
Rain's Velocity = 116.926 km/h
Answer:
8.0 Ns
Explanation:
Change in momentum is given as:
Final momentum - Initial momentum
= m*v - m*u
Where m = mass of ball
v = final velocity
u = initial velocity
Change in momentum = (2.0 * 3.0) - (2.0 * 7.0)
= 6.0 - 14.0 = -8.0 Ns
The magnitude will be |-8.0| = 8.0 Ns
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.
Answer:
so initial momentum is 0.22kgm/s
Explanation:
m1=0.20kg
m2=0.30kg
initial velocity of m1=u1=0.50m/s
initial velocity of m2=u2=0.40m/s
total momentum of the system before collision
Pi=m1u1+m2u2
Pi=0.20kg×0.50m/s+0.30kg×0.40m/s
Pi=0.1kgm/s+0.12kgm/s
Pi=0.22kgm/s