Answer: alright now listen fe203(s)=567.66666
Explanation:
Answer:
C11H25SO4
Explanation:
The total mass of the compound is 253.4 g, so, the mass of each element will be:
C: 52.14% of 253.4 = 0.5214x253.4 = 132.12 g
H: 9.946% of 253.4 = 0.09946x253.4 = 25.20 g
S: 12.66% of 253.4 = 0.1266x253.4 = 32.08 g
O: 25.26% of 253.4 = 0.2526x253.4 = 64.00 g
The molar mass are: C = 12 g/mol, H 1 g/mol, S = 32 g/mol, and O = 16 g/mol
So, to know how much moles will be, just divide the mass calculated above for the molar mass:
C: 132.12/12 = 11 moles
H: 25.20/ 1 = 25 moles
S: 32.08/32 = 1 mol
O: 64.00/16 = 4 moles
So the molecular formula is C11H25SO4
To balance this equation, first we should consider balancing C because it only presents in one reactant and one product. Assuming the coefficient of C6H6 is 1, there are 6 C's in the reactant, so it generates 6CO2. Then consider balancing H for the same reason. If the coefficient of C6H6 is 1, there are 6 H's in the reactant, so it generates 3H2O.
Now that the coefficient of the products are determined, we can balance O. There are 6*2=12 O's in CO2 and 3*1=3 O's in H2O. So the total number of O in the products is 12+3 = 15. O2 is the only reactant that contains O, so to balance the equation, the coefficient of O2 should be 15/2.
Now the equation looks like:
C6H6 + 15/2O2 ⇒ 6CO2 + 3H2O.
Times both sides of the equation by 2 results the final answer:
2C6H6 + 15O2 ⇒ 12CO2 + 6H2O
The answer should be <span>balance electrically
</span><span>Chemical reactions that form ions should have a balanced charge. The example of the reaction is HCl. When forming ions, the equation should be:
HCl => </span>

+

In this case, the hydrogen has one plus charge and chlorine has one negative charge. The resultant should be zero, so it's balanced.