First, isotopes <u>are the atoms of a single element whose nuclei have a different number of neutrons</u>, and therefore, differ in mass numbers. You should know that atoms are formed by a nucleus that has a small size and is made up of protons and neutrons. The nucleus is surrounded by a cloud of electrons, which are found in a region of the atom called the cortex.
The mass number, represented as A, <u>is the sum of the number of protons and neutrons in the nucleus</u>. On the other hand, the atomic number (Z) is <u>the number of protons that exist in the nucleus.
</u>
The isotopes of an element X are represented as follows,
<em>(see first attached picture)</em>
It should be noted that the number of neutrons of a chemical element can be calculated as the difference A-Z.
<u>The atomic and mass numbers of bismuth with 125 neutrons are</u>:
Z = 83
A = 83 + 125 = 208
Thus, the atomic symbol of the bismuth isotope with 125 neutrons is:
<em>(see second attached picture)</em>
Answer is: pH of hydroxylamine solution is 9,23.
Kb(NH₂OH) = 1,8·10⁻⁵<span>.
c</span>₀(NH₂OH)<span> = 0,0500 M =
0,05 mol/L.
c(NH</span>₂⁺) = c(OH⁻) = x.
c(NH₂OH<span>) = 0,05 mol/L - x.
Kb = c(NH</span>₂⁺) · c(OH⁻) / c(NH₂OH).
0,0000000066 = x² / (0,05 mol/L - x).
solve quadratic equation: x = c(OH⁻) = 0,000018 mol/L.<span>
pOH = -log(</span>0,000018 mol/L) = 4,74.<span>
pH = 14 - 4,74 = 9,23.</span>
Refer to the diagram shown below.
The piston supports the same load W at both temperatures.
The ideal gas law is

where
p = pressure
V = volume
n = moles
T = temperature
R = gas constant
State 1:
T₁ = 20 C = 20+273 = 293 K
d₁ = 25 cm piston diameter
State 2:
T₂ = 150 C = 423 K
d₂ = piston diameter
Because V, n, and R remain the same between the two temperatures, therefore

If the supported load is W kg, then

Similarly,


Because p₁/p₂ = T₁/T₂, therefore

The minimum piston diameter at 150 C is 20.8 cm.
Answer: 20.8 cm diameter