Answer:
fjskeowkcnekvo Dee five votes come vote for dog even r
The empirical formula for a compound is KClO3
Explanation
find the moles of each element
moles = % composition/molar mass
molar mass of of potassium =39g/mol ,chlorine = 35.5 g/mol, oxygen =16 g/mol
moles of potassium = 31.9 / 39 = 0.818 moles
moles of chlorine = 28.9/35.5 = 0.814 moles
moles of oxygen = 39.2/ 16 = 2.45 moles
find the mole ratio by dividing with the smallest mole = 0.814 moles
potassium = 0.818/0.814 =1
chlorine = 0.814/0.814 = 1
oxygen = 2.45 /0.814 =3
the empirical formula is therefore = KClO3
The Great Oxidation Event (GOE), sometimes also called the Great Oxygenation Event, Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust,[2] or Oxygen Revolution, was a time period when the Earth's atmosphere and the shallow ocean first experienced a rise in oxygen, approximately 2.4 billion years ago (2.4 Ga) to 2.1–2.0 Ga during the Paleoproterozoic era.[3] Geological, isotopic, and chemical evidence suggests that biologically produced molecular oxygen (dioxygen, O2) started to accumulate in Earth's atmosphere and changed Earth's atmosphere from a weakly reducing atmosphere to an oxidizing atmosphere,[4] causing many existing species on Earth to die out.[5] The cyanobacteria producing the oxygen caused the event which enabled the subsequent development of multicellular forms.
Answer:
1. pH = 1.23.
2. 
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:

It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the pKa is:

The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:

2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:

It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:

Which is also shown in net ionic notation.
Best regards!
Idk look it up on another website