A. Reduced greenhouse gas emissions.
The electromagnetic that has a shorter wavelength is ultraviolet (UV)
Answer:
The total amount of energy that would have been released if the asteroid hit earth = The kinetic energy of the asteroid = 1.29 × 10¹⁵ J = 1.29 PetaJoules = 1.29 PJ
1 PJ = 10¹⁵ J
Explanation:
Kinetic energy = mv²/2
velocity of the asteroid is given as 7.8 km/s = 7800 m/s
To obtain the mass, we get it from the specific gravity and diameter information given.
Density = specific gravity × 1000 = 3 × 1000 = 3000 kg/m³
But density = mass/volume
So, mass = density × volume.
Taking the informed assumption that the asteroid is a sphere,
Volume = 4πr³/3
Diameter = 30 m, r = D/2 = 15 m
Volume = 4π(15)³/3 = 14137.2 m³
Mass of the asteroid = density × volume = 3000 × 14137.2 = 42411501 kg = 4.24 × 10⁷ kg
Kinetic energy of the asteroid = mv²/2 = (4.24 × 10⁷)(7800²)/2 = 1.29 × 10¹⁵ J
Answer:
130.22 g
Explanation:
Parameters given:
Mass of water Mw = 225 g
Mass of stirrer Ms = 40 g
Mass of silver M(S) = 410 g
By applying the law of conservation of energy:
(McCc + MsCs + MwCw)ΔTw = M(S)C(S)ΔT(S)
where Mc = Mass of cup
Cc = Specific heat capacity of aluminium cup = 900 J/gC
Cs = Specific heat capacity of copper stirrer = 387 J/gC
Cw = Specific heat capacity of water = 4186 J/gC
ΔTw = change in temperature of water = 32 - 27 = 5 °C
C(S) = Specific heat capacity of silver = 234 J/gC
ΔT(S) = change in temperature of silver = 88 - 32 = 56 °C
Therefore:
[(Mc * 900) + (40 * 387) + (225 * 4186)] * 5 = 410 * 234 * 56
(900Mc + 957330) * 5 = 5276700
900Mc + 957330 = 5276700 / 5 = 1074528
900Mc = 1074528 - 957330
900Mc = 117198
Mc = 117198/ 900
Mc = 130.22 g
The mass of the cup is 130.22 g.