The motion of the racers might change from the start because the pressure goes up so all the racer wants is to speed up and win, so when the racer first starts he or she is calm because he's not driving yet and when he or she is on his/hers way to he finish line he/she just wants to win and gets under pressure so he speeds up even more and drifts. Your welcome
Answer: 529.9 Hz
Explanation:
Here we need to use the Doppler equation, so we have:
f' = f*(v + v0)/(v - vs)
Here, f is the frequency = 500Hz
v is the velocity of the wave, = 334m/s
v0 is the velocity of the observer = 20m/s
vs is the velocity of the source = 0m/s
Then we have:
f' = 500Hz*(334m/s + 20m/s)/(334m/s) = 529.9 Hz
Well that depends...what is your question?
The outside observer, at rest relative to the spaceship, would see the spaceship
get shorter. and the clocks on the spaceship run slower than they should.
At the same time, the crew of the spaceship, looking back at the observer on
Earth, would see the observer on Earth get shorter, and the observer's clock
run slower than it should.
They would both be measuring what they see correctly.
Answer: current I = 0.96 Ampere
Explanation:
Given that the
Resistance R = 60 Ω
Power = 55 W
Power is the product of current and voltage. That is
P = IV ...... (1)
But voltage V = IR. From ohms law.
Substitutes V in equation (1) power is now
P = I^2R
Substitute the above parameters into the formula to get current I
55 = 60 × I^2
Make I^2 the subject of formula
I^2 = 55/60
I^2 = 0.92
I = sqr(0.92)
I = 0.957 A
Therefore, 0.96 A current must be applied.