Answer:
Yes, the value of g affected by the radius.
Explanation:
The formula for the force of gravity of 2 objects is
, where m1 and m2 are the masses of the 2 objects, r is the radius, and G is the gravitational constant, which is approximately
.
Therefore, as the radius if bigger, the force of gravity is going to be smaller exponentially.
True as the independent variable is over the dependent variable and controls it as the dependent relies on the independent.
Answer:
(A) The wavelength of this wave is
.
(B) The amplitude of this wave is
.
Explanation:
Refer to the diagram attached. A point on this wave is at a crest or a trough if its distance from the equilibrium position is at a maximum.
The amplitude of a wave is the maximum displacement of each point from the equilibrium position. That's the same as the vertical distance between the crest (or the trough) and the equilibrium position.
- On the diagram, the distance between the two gray dashed lines is the vertical distance between a crest and a trough. According to the question, that distance is
for the wave in this rope. - On the other hand, the distance between either gray dashed line and the black dashed line is the distance between a crest (or a trough) and the equilibrium position. That's the amplitude of this wave.
Therefore, the amplitude of the wave is exactly
the vertical distance between a crest and a trough. Hence, for the wave in this question,
.
The wavelength of a transverse wave is the same as the minimum (horizontal) distance between two crests or two troughs. That's twice the horizontal distance between a crest and a trough in the same period.
.