Add together the income from straight pay and that from tips:
($5/hr)(40 hrs) + $210.50
$200 + $210.50 = $410.50.
Jon's total earnings for the week were $410.50.
For this case we must simplify the following expression:![7 (\sqrt [3] {2x}) - 3 (\sqrt [3] {16x}) - 3 (\sqrt [3] {8x})](https://tex.z-dn.net/?f=7%20%28%5Csqrt%20%5B3%5D%20%7B2x%7D%29%20-%203%20%28%5Csqrt%20%5B3%5D%20%7B16x%7D%29%20-%203%20%28%5Csqrt%20%5B3%5D%20%7B8x%7D%29)
We rewrite:

We rewrite the expression:
![7 (\sqrt [3] {2x}) - 3 (\sqrt [3] {2 ^ 3 * 2x}) - 3 (\sqrt [3] {2 ^ 3 * x}) =](https://tex.z-dn.net/?f=7%20%28%5Csqrt%20%5B3%5D%20%7B2x%7D%29%20-%203%20%28%5Csqrt%20%5B3%5D%20%7B2%20%5E%203%20%2A%202x%7D%29%20-%203%20%28%5Csqrt%20%5B3%5D%20%7B2%20%5E%203%20%2A%20x%7D%29%20%3D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
Then, taking the terms of the radical:
![7 (\sqrt [3] {2x}) - 3 (2 \sqrt [3] {2x}) - 3 (2 \sqrt [3] {x}) =\\7 \sqrt [3] {2x} -6 \sqrt [3] {2x} -6 \sqrt [3] {x} =](https://tex.z-dn.net/?f=7%20%28%5Csqrt%20%5B3%5D%20%7B2x%7D%29%20-%203%20%282%20%5Csqrt%20%5B3%5D%20%7B2x%7D%29%20-%203%20%282%20%5Csqrt%20%5B3%5D%20%7Bx%7D%29%20%3D%5C%5C7%20%5Csqrt%20%5B3%5D%20%7B2x%7D%20-6%20%5Csqrt%20%5B3%5D%20%7B2x%7D%20-6%20%5Csqrt%20%5B3%5D%20%7Bx%7D%20%3D)
We add similar terms:
![\sqrt [3] {2x} -6 \sqrt [3] {x}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B2x%7D%20-6%20%5Csqrt%20%5B3%5D%20%7Bx%7D)
Answer:
Option C
Let x = our unknown number
10x = 600
Divide by 10 on both sides to isolate the variable x.
x = 600/10
x = 60
600 is 10 times as much as 60.
Answer: 5 = 5 or true its an equal equation.
Step-by-step explanation:
The equation would look like this: 2 + 3 = 10 divided by 2. This equation is extremely easy it turns out to be 5 = 5 because 2 + 3 = 5 and 10 divided by 2 is 5 so your final answer is 5 = 5 or if its a true or false question, the answer is true it is an equal equation. Please mark me brainliest. -Cyrusskywalker
Solution: We are given:

We know that a usual values of the test scores falls within 2 standard deviation from the mean.
Therefore, the minimum usual test score is:




The maximum usual test score is:




Therefore, the minimum and maximum “usual” values of the test scores are:
65.4 and 90.6