Answer: The property that will best provide evidence that the samples are solid includes:
--> if the substance has a definite shape,
-->if the substance has a definite volume
--> if it's tightly packed.
Explanation:
According to the kinetic theory of matter, every substance consist of very large number of very small particles called molecules. These molecules, which are made up of atoms that are the smallest particles of a substance that can exist in a free state.
Matter can exist in the following states:
--> Solid state
--> liquid state or
--> Gaseous state.
The general property of a substance that is in gaseous state includes:
--> Definite shape: A substance can be grouped as a solid if it's shape is fixed that is, it doesn't depend on the shape of other materials.
--> Definite volume: A substance can be grouped as a solid if it occupies its own shape. This is due to the force of cohesion among its molecules.
--> Tightly packed: A substance can be grouped as solid if the molecular movements of the particles are negligible.
From the samples under observation by Juan and kym, if the sample that possesses the above described qualities, it is a solid rather than liquid or gas.
Answer:
Answer: <u>Height</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>2</u><u>0</u><u>4</u><u> </u><u>m</u>
Explanation:
At the highest point, it is called the maximum height.
• From third newton's equation of motion:

• At maximum height, v is zero
• u is initial speed
• g is -9.8 m/s²
• s is the height

Answer:
the time it takes for one complete back and forth swing
Explanation:
the Mark's is showing you the time it swings back and forth
Answer:
2C
Explanation:
The equivalent capacitance of a parallel combination of capacitors is the sum of their capacitance.
So, if the capacitance of each capacitor is half the previous one, we have a geometric series with first term = C and rate = 0.5.
Using the formula for the sum of the infinite terms of a geometric series, we have:
Sum = First term / (1 - rate)
Sum = C / (1 - 0.5)
Sum = C / 0.5 = 2C
So the equivalent capacitance of this parallel connection is 2C.