Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!
The average kinetic energy of a gas particle is directly proportional to thetemperature. An increase intemperature increases the speed in which the gas molecules move. Allgases at a given temperature have the same average kinetic energy. Lightergas molecules move faster than heavier molecules.
Answer:
n = 1.4266
Explanation:
Given that:
refractive index of crystalline slab n = 1.665
let refractive index of fluid is n.
angle of incidence θ₁ = 37.0°
Critical angle 

According to Snell's law of refraction:

At point P ; 

Therefore:

Then maximum value of refractive index n of the fluid is:


n = 1.4266
The maximum height to which the ball attain before falling back down is 1147.96 m
<h3>Data obtained from the question</h3>
The following data were obtained from the question:
- Initial velocity (u) = 150 m/s
- Final velocity (v) = 0 m/s (at maximum height)
- Acceleration due to gravity (g) = 9.8 m/s²
- Maximum height (h) =?
<h3>How to determine the maximum height </h3>
The maximum height reached by the ball can be obtained as illustrated below:
v² = u² – 2gh (since the ball is going against gravity)
0² = 150² – (2 × 9.8 × h)
0 = 22500 – 19.6h
Collect like terms
0 – 22500 = –19.6h
–22500 = –19.6h
Divide both side by –19.6
h = –22500 / –19.6
h = 1147.96 m
Thus, the maximum height reached by the ball is 1147.96 m
Learn more about motion under gravity:
brainly.com/question/22719691
#SPJ1