Explanation:
Equation of the reaction:
Br2(l) + Cl2(g) --> 2BrCl(g)
The enthalpy change for this reaction will be equal to twice the standard enthalpy change of formation for bromine monochloride, BrCl.
The standard enthalpy change of formation for a compound,
ΔH°f, is the change in enthalpy when one mole of that compound is formed from its constituent elements in their standard state at a pressure of 1 atm.
This means that the standard enthalpy change of formation will correspond to the change in enthalpy associated with this reaction
1/2Br2(g) + 1/2Cl2(g) → BrCl(g)
Here, ΔH°rxn = ΔH°f
This means that the enthalpy change for this reaction will be twice the value of ΔH°f = 2 moles BrCl
Using Hess' law,
ΔH°f = total energy of reactant - total energy of product
= (1/2 * (+112) + 1/2 * (+121)) - 14.7
= 101.8 kJ/mol
ΔH°rxn = 101.8 kJ/mol.
Oxygen carbon and hydrogen
Li2S + 2 HNO3 --> 2 LiNO3 + H2S
Li2 S + H2 N2 O2 --> Li2 N2 O5 + H2 S
Li S + H2 N2 O5 -> Li N2 O5 + H2 S
Li2 S2 + H4 N4 O10 --> Li2 N4 O10 + H4 S2
Li^2 S^2 + H^4 N^4 O^10 --> Li^2 N^4 O^10 + H^4 S^2
Answer: 159 grams
Explanation:
Copper (ii) oxide has the chemical formula CuO.
Now given that:
Mass of CuO in grams = ? (let unknown value be Z)
Number of moles = 2.00 moles
Molar mass of CuO = ?
For the molar mass of CuO: Atomic mass of Copper = 63.5g ; Oxygen = 16g
= 63.5g + 16g
= 79.5 g/mol
Apply the formula:
Number of molecules = (mass in grams/molar mass)
2.00 moles = (Z / 79.5 g/mol)
Z = 79.5 g/mol x 2.00 moles
Z = 159g
Thus, there are 159 grams in 2.00 moles of copper (ii) oxide
The answer is salinity, salinity is the saltiness or dissolved inorganic salt content of a body of water.