Answer:
Six C atoms (C₆); five H atoms (H₅); one N atom (N); no O atoms
Explanation:
The rule of 13 states that the formula of a compound is a multiple n of 13 (the molar mass of CH) plus a remainder r.
MF = CₙHₙ₊ᵣ
Y has a molecular mass of 91 u
91/13 =7r0
The formula can't be C₇H₇ because a hydrocarbon must have an even number of H atoms,
The odd mass and the odd number of H atoms make it reasonable to add an N atom and subtract CH₂ (CH₂ = 14):
C₇H₇ + N - CH₂ = C₆H₅N
Check:
6C = 6 × 12.000 = 72.000 u
5H = 5 × 1.008 = 5.040
1N = 1 × 14.003 = <u>14.003 </u>
TOTAL = 91.043 u
This is excellent agreement with the observed mass of 91.0425 u.
There are six C atoms (C₆)
There are five H atoms (H₅)
There is one N atom (N)
There are no O atoms.
Answer:
are you rich in points brother ? or sister ?
We could reduce soil erosion and recycle phosphorus from farm and human waste so that we could help make food production sustainable and prevent algae blooms. We can also do land reclamation as well to help solve this problem. With the land, we would have to design a system to where the land could be functional again in order to plant crops, trees, also to help the wildlife that was once a part of the island. Therefore if the design is done before the mining then afterward we can do the reclamation of the land which would help the people to be able to function after the mining. It would also help the future generations that come along after the previous generations. Everyone must work together in the process in order for everyone to survive. If all this is done then the people of the island would not have to import their food. The reclamation process is the most important thing that has to be designed first whether it is land, soil, water, lakes, and clay then after plant trees, vegetation, and other forms of plants to help replenish the land after the mining is done.
I hope I helped :3
Answer:
XCH₄ = 0.461
XCO₂ = 0.539
Explanation:
Step 1: Given data
- Partial pressure of methane (pCH₄): 431 mmHg
- Partial pressure of carbon dioxide (pCO₂): 504 mmHg
Step 2: Calculate the total pressure in the container
We will sum both partial pressures.
P = pCH₄ + pCO₂
P = 431 mmHg + 504 mmHg = 935 mmHg
Step 3: Calculate the mole fraction of each gas
We will use the following expression.
Xi = pi / P
XCH₄ = pCH₄/P = 431 mmHg/935 mmHg = 0.461
XCO₂ = pCO₂/P = 504 mmHg/935 mmHg = 0.539