From the chemical formula the total mass of the compound can be determined. The mass of the 1 mole of the compound is its molar mass. The atom by which the molecule is generated, the mass of these atoms are expressed in terms of amu or atomic unit mass, but after formation of a molecule in a particular ratio the mass of each of the atom becomes the total molecular weight of the generated molecule. In this case the molecule posses three atoms X, Y and Z which are in a ratio of 2:2:7. Thus the chemical formula of the compound can be written as
.
So the total mass of the compound in amu is {(2×47)+(2×42)+(7×16)} = {94+84+112}=290 amu.
Thus 1 mole of the compound contains 290 amu or 290 g by mass.
Henceforth 20 gram of the compound is equivalent to (20/290) = 0.068 mole.
Answer: 1. C. polar covalent: electrons shared between silicon and sulfur but attracted more to the sulfur
2. B) 
3. B) Fluorine
Explanation:
1. A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms.
Electronegativity difference = electronegativity of sulphur- electronegativity of silicon = 2.5 -1.8 = 0.7
Thus as electronegativity difference is less than 1.7 , the cond is polar covalent and as electronegativity of sulphur is more , the electrons will be more towards sulphur.
2. A molecular compound is usually composed of two or more nonmetal elements. Example:
Ionic compound is formed by the transfer of electrons from metals to non metals. Example:
,
and 
3. For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here K is having an oxidation state of +1 and as the compound formed is KZ, the oxidation state of non metallic element Z should be -1. Thus the element Z is flourine which exists as diatomic gas 
I think it’ll be option B.
Answer:
120g
Explanation:
Step 1:
We'll begin by writing the balanced equation for the reaction.
Sn + 2HF —> SnF2 + H2
Step 2:
Determination of the number of mole HF needed to react with 3 moles of Sn.
From the balanced equation above,
1 mole of Sn and reacted with 2 moles of HF.
Therefore, 3 moles Sn will react with = 3 x 2 = 6 moles of HF.
Step 3:
Conversion of 6 moles of HF to grams.
Number of mole HF = 6 moles
Molar Mass of HF = 1 + 19 = 20g/mol
Mass of HF =..?
Mass = number of mole x molar Mass
Mass of HF = 6 x 20
Mass of HF = 120g
Therefore, 120g of HF is needed to react with 3 moles of Sn.
Answer:
just see it it will help trust me its my school work
Explanation: