A and B are experiencing winter. The picture which isn't available here in this question is attached below.
Option C.
<h3><u>Explanation:</u></h3>
The earth is tilt by an angle of 23.2° to the vertical plane. This makes the seasonal variation of earth, because in some time of the year, the northern hemisphere faces the sun directly, experiencing summer and then southern hemisphere is away from summer experiencing winter and vice versa. The summer occurs when the place directly faces the sun. And the winter happens when the place obliquely faces the sun or doesn't face the sun at all.
Here in this diagram, we can see that the points A and B are the north pole and the part in northern hemisphere respectively which aren't facing the sun directly, whereas C and D are facing the sun. Thus the southern hemisphere is experiencing summer and the northern hemisphere the winter.
Answer:
m H2(g) = 2.241 g H2(g)
Explanation:
- 2Al(s) + 3H2SO4(aq) → Al2(SO4)3(aq) + 3 H2(g)
limit reagent:
∴ Mw Al = 26.982 g/mol
∴ Mw H2SO4 = 98.0785 g/mol
⇒ n Al = (20 g Al)×(mol/26.982 g) = 0.7412 mol Al
⇒ n H2SO4 = ( 115 g H2SO4 )×(mol/98.0785 g) = 1.173 mol H2SO4
⇒ n H2 = (0.7412 mol Al)×(3 mol H2/ 2 mol Al) = 1.112 mol H2
∴ Mw H2 = 2.016 g/mol
⇒ g H2 = (1.112 mol H2)×(2.016 g/mol) = 2.241 g H2
For a reaction to be spontaneous under standard conditions at all temperatures, the signs of ΔH° and ΔS° must be negative and positive, respectively.
<span>Gibbs free energy (G) determines if reaction will proceed
spontaneously, if </span>ΔG is negative, reaction is spontaneous.<span>
ΔG = ΔH - T·ΔS.
ΔG - changes in Gibbs free energy.
ΔH - changes in enthalpy.
ΔS - changes in entropy.
T is temperature in Kelvins.</span>