Answer:
Measuring a pencil in meters would be very difficult, as a single meter is much longer than one pencil. Also, measuring a hallway in millimeters would be very difficult considering how small millimeters are in comparison to a hallway. However, if you switch these two then they would work very well.
The temperature is 370K.
The volume of a given fuel pattern is immediately proportional to its absolute temperature at regular pressure (Charles's law). The volume of a given amount of fuel is inversely proportional to its pressure whilst temperature is held steady (Boyle's regulation).
Density is immediately proportional to stress and indirectly proportional to temperature. As stress increases, with temperature constant, density will increase. Conversely when temperature increases, with strain regular, density decreases.
The equations describing those legal guidelines are unique cases of the best gasoline regulation, PV = NRT, wherein P is the pressure of the gas, V is its extent, n is the number of moles of the gas, T is its kelvin temperature, and R is the ideal (common) gas constant.
Learn more about pressure here: brainly.com/question/25736513
#SPJ4
For equal moles of gas, temperature can be calculated from ideal gas equation as follows:
P×V=n×R×T ...... (1)
Initial volume, temperature and pressure of gas is 3.25 L, 297.5 K and 2.4 atm respectively.
2.4 atm ×3.25 L=n×R×297.5 K
Rearranging,
n\times R=0.0262 atm L/K
Similarly at final pressure and volume from equation (1),
1.5 atm ×4.25 L=n×R×T
Putting the value of n×R in above equation,
1.5 atm ×4.25 L=0.0262 (atm L/K)×T
Thus, T=243.32 K
A is the correct awnser Beacuse it ether right kne
Answer:
Ea=5.5 Kcal/mole
Explanation:
Let rate constant are
and
at temperature
and 
By using Arrhenius equation at two different two different temperature,
By putting value of R=2 cal/mole.K

By rounding off upto 2 significant figure;
