Assuming our "closed tube" is closed at only one end, then
<span> v = fλ = f*4L/n
</span><span> where "n" is the harmonic number. So
</span><span> L = nv / 4f = n*346m/s / 4*256Hz = n*0.38 m
</span> <span>Since the only option in your list that is an integer multiple of 0.38 m is 1.35 m
</span><span> I'd say that we're hearing the fourth harmonic.
answer is
</span><span>A. 1.35 m</span><span>
</span>
Answer:
nπ + π/2 for any integer n
Explanation:
Since destructive interference occurs every odd multiple of half wavelength, that is π/2, 3π/2, 5π/2 where the interference is half wavelength and in general, (n + 1/2)π where n is an integer. So, nπ + π/2 for any integer n
Answer:
This could be done if a stop watch is used to calculate the time taken to hear the echo and a rule should be used to calculate the distance between the bricks and the wall. Then divide distance by time
Explanation:
I hope this is what you need
PLEASE MAKE ME BRAINLIEST
<u>Answer
</u>
A. 1 and 2
<u>Explanation
</u>
At point 1 we have the highest potential energy and the kinetic energy is zero.
At 2 the potential energy is minimum and the kinetic energy is maximum.
The law of conservation of energy says that energy cannot be created nor destroyed. So, the change in P.E = Change in K.E.
P.E = height × gravity × mass. The height referred here is the perpendicular height. Gravity and mass are constant in this case.
From the diagram it can be seen clearly that the vertical height from 2 to 1 is much greater than from 4 to 3.
This shows that the change in P.E is greater between 1 and 2 and so is kinetic energy.