The law of conservation of momentum basically means that energy is always conserved and never lost when a collision happens.
Using the formula p=mv ...
Player A would have a momentum of 220 N•S
Player B would have a momentum of 0 because he is not moving
After the collision, the total momentum is still 220 N•S because energy is never lost, but now player A is at 0 and player B took his momentum. Think about it this way, if you bumped into something that wasn’t moving, it would fall and you most likely wouldn’t keep moving.
Elastic collisions are where the objects bounce each other and in inelastic collisions they stick together. I don’t watch much football but if you do this should make sense.
If the players fall down together (they tackle each other and fall? I think) it should be inelastic.
Sorry if this was long and confusing but I really hope this helps! ☺️
<h3><u>Answer;</u></h3>
Mid-ocean ridges
<h3><u>Explanation</u>;</h3>
- Sea-floor spreading is the process by which molten material adds new oceanic crust to the ocean floor.
- Mid-ocean ridge is an undersea mountain chain where new ocean floor is produced at a divergent plate boundary.
- Mid ocean ridge occurs when convection currents rise in the mantle beneath the oceanic crust and create magma where two tectonic plates meet at a divergent boundary.
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
Answer:
Value of electric field along the axis and equitorial axis
and
respectively.
Explanation:
Given :
Distance between charges , 
Magnitude of charges , 
Dipole moment , 
Case A) (x,y) = (12.0 cm, 0 cm) :
Electric field of dipole in its axis ,

Putting all values and 
We get , 
Case B) (x,y) = (0 cm, 12.0 cm) :
Electric field of dipole on equitorial axis ,

Putting all values and
We get , 
Hence , this is the required solution.