In this case two vectors are colinear and they have an opposite orientation.
N + ( - S ) = N - S = 1 m - 0.8 m = 0.2 m
Answer:
The total displacement is 0.2 m north.
The answer is 1. 4 is incorrect because you can't really decrease the mass of the driver. 3 is incorrect because accelerating the driver would cause more damage than not. 2 is incorrect because decreasing the distance would only cause more damage. 1 is correct because by increasing the length of time the force acts on the driver helps reduce the speed of the driver and cause the drive to sustain less injuries. Hope that helps.
Weight tending to shear the pin is
W = 24.0 N
The shear area of the pin is
A = (π/4)*(2.0 x 10⁻³ m)² = 3.1416 x 10⁻⁶ m².
The shear stress is
τ = (24.0 N)/(3.1416 x 10⁻⁶ m²)
= 7.64 x 10⁶ Pa
= 7.64 MPa
Answer: 7.64 Mpa
Answer:
Part A
it would take 6 sec
it would take 3 sec
Explanation:
We are told that the power supplied to the wheel is constant which means that the sport car is gaining energy i.e
Hence if power is constantly supplied energy constantly increase
From the formula of the Kinetic energy

we can see that as the speed doubles from 29 mph to 58 mph the energy needed is
= 4 times of the energy from the formula
Also the time needed would also be 4 times because energy i directly proportional to time
Hence to reach 58mph the time that it would take is
=
We are told that the ground pushes the car with a constant force and
F = ma
this means that the acceleration is also constant
now from newtons law
v = u +at
Looking at it we see that final velocity is directly proportional with time
hence it would take twice the time to reach twice the final velocity
Time to reach 58mph = 3 s
since time to reach 29 mph(
) =(
)1.5 s