That's called wave <em>REFRACTION</em>.
Answer: option A. r = 3x+2y
Explanation:
Vector r is plotted on the graph. On x-axis each small division corresponds to 1 unit. Similarly on y-axis, each small division corresponds to one unit.
The vector is the resultant of addition of its x and y components. we would draw perpendicular to the x-axis and y-axis from the head of vector r.
On x-axis,
= +3 units
on y-axis,
= +2 units

Hence, vector r can be written as: r = 3x + 2y . Correct option is A.
Answer:
The reason for phonograph installation is to provide information about humans to interstellar aliens.
Explanation:
Phonographs are archaic forms of gramophone which are able to record and reproduce sound.Phonographs were used in early days in voyagers to help transmit information about humans to nearby alien species in space.
Answer:
length of the ladder is 13.47 feet
base of wall to latter distance 6.10 feet
angle between ladder and the wall is 26.95°
Explanation:
given data
height h = 12 feet
angle 63°
to find out
length of the ladder ( L) and length of wall to ladder ( A) and angle between ladder and the wall
solution
we consider here angle between base of wall and floor is right angle
we apply here trigonometry rule that is
sin63 = h/L
put here value
L = 12 / sin63
L = 13.47
so length of the ladder is 13.47 feet
and
we can say
tan 63 = h / A
put here value
A = 12 / tan63
A = 6.10
so base of wall to latter distance 6.10 feet
and
we say here
tanθ = 6.10 / 12
θ = 26.95°
so angle between ladder and the wall is 26.95°
Answer:
Initial Velocity = 0 m/s
Final Velocity = 34.6 m/s
time = 3.5 s
Explanation:
The initial velocity must be zero since, the egg must be at rest initially, before dropping.
<u>Initial Velocity = 0 m/s</u>
Now, for time we use 2nd equation of motion:
h = Vi t + (1/2)gt²
where,
h = Height = 61 m
Vi = Initial Velocity = 0 m/s
g = 9.8 m/s²
t =time = ?
Therefore,
61 m = (0 m/s)(t) + (1/2)(9.8 m/s²)t²
t² = (61 m)(2)/(9.8 m/s²)
t = √(12.45 s²)
<u>t = 3.5 s</u>
Now, for final velocity we will use 1st equation of motion:
Vf = Vi + gt
Vf = 0 m/s + (9.8 m/s²)(3.5 s)
Vf = 34.6 m/s