Subduction is, "<span>the sideways and downward movement of the edge of a plate of the earth's crust into the mantle beneath another plate." The basalt would most likely be swallowed up into the ground.
Hope this is what you were looking for! :)
</span>
Answer:
a. metallic bond
b. the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “cloud” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions.
c. due to the presence of free electrons in its outer energy levels
Sure !
Start with Newton's second law of motion:
Net Force = (mass) x (acceleration) .
This formula is so useful, and so easy, that you really
should memorize it.
Now, watch:
The mass of the box is 5.25 kilograms, and the box is
accelerating at the rate of 2.5 m/s² .
What's the net force on the box ?
Net Force = (mass) x (acceleration)
= (5.25 kilograms) x (2.5 m/s²)
Net force = 13.125 newtons .
But hold up, hee haw, whoa ! Wait a second !
Bella is pushing with a force of 15.75 newtons, but the box
is accelerating as if the force on it is only 13.125 newtons.
What happened to the rest of Bella's force ? ?
==> Friction is pushing the box in the opposite direction,
and cancelling some of Bella's force.
How much ?
(Bella's 15.75 newtons) minus (13.125 that the box feels)
= 2.625 newtons backwards, applied by friction.
Molarity and molality both describe the concentration of a substance in terms of moles.
Molarity describes the number of moles of a substance per unit of volume, typically per liter (mol/l).
Molality describes the number of moles per unit of mass, typically kilograms (mol/kg).
When determining the molality of a solution, mol/kg can be obtained by finding the number of moles in the substance, and dividing that number by the the total weight in kilograms of that substance.
When determining the molarity of a solution, mol/l can be obtained by dividing the number of moles in a substance by the total volume in liters of that substance.
Answer:
1. 
2. 
3. 
Explanation:
Given:
- mass of slinky,

- length of slinky,

- amplitude of wave pulse,

- time taken by the wave pulse to travel down the length,

- frequency of wave pulse,

1.



2.
<em>Now, we find the linear mass density of the slinky.</em>


We have the relation involving the tension force as:




3.
We have the relation for wavelength as:


