Answer:
producer to decomposer
Explanation:
This is because in a food chain , energy flow from one trophic level to another. The producer which include plants are the source of energy which they manufacture good in the presence of light energy from sun. Energy flow directly from the producer to the primary consumer which are heterotrophs that feed on plants. Energy flow from consumer to decomposer after the consumer died and it is decayed.
<span>The "exosphere" is the most distant and tenuous "layer" of our atmosphere.</span>
Answer:
The answer to your question is 0.269 g of Pb
Explanation:
Data
Lead solution = 0.000013 M
Volume = 100 L
mass = 0.269 g
atomic mass Pb = 207.2 g
Chemical reaction
2Pb(s) + O₂(aq) + 4H⁺(aq) → 2H₂O(l) + 2Pb₂⁺(aq)
Process
1.- Calculate the mass of Pb in solution
Formula
Molarity = 
Solve for number of moles
Number of moles = Volume x Molarity
Substitution
Number of moles = 100 x 0.000013
Number of moles = 0.0013
2.- Calculate the mass of Pb formed.
207.2 g of Pb ----------------- 1 mol
x g ----------------- 0.0013 moles
x = (0.0013 x 207.2) / 1
x = 0.269 g of Pb
Answer:
See below
Explanation:
It is neither, at least not at room temperature.
Citric acid exists as a power at room temperature, but can be crystallized from cold water. This can be considered it's " solid state, " but as I mentioned before this acid is a powder. Take a look at the attachment below. This is a citric acid present as a crystal;
Answer:
A base that forms K⁺ and OH⁻ ions.
Explanation:
The KOH is an Arrhenius base.
A is <em>wrong</em>. A base does not form H⁺ ions.
B is <em>wrong</em>. A metal hydroxide forms K⁺ ions, not KO⁻ ions.
D is <em>wrong</em>. The metal forms K⁺ ions, KO⁻ ions.