Answer:
108 kPa
Step-by-step explanation:
To solve this problem, we can use the <em>Combined Gas Laws</em>:
p₁V₁/T₁ = p₂V₂/T₂ Multiply each side by T₁
p₁V₁ = p₂V₂ × T₁/T₂ Divide each side by V₁
p₁ = p₂ × V₂/V₁ × T₁/T₂
Data:
p₁ = ?; V₁ = 34.3 L; T₁ = 31.5 °C
p₂ = 122.2 kPa; V₂ = 29.2 L; T₂ = 21.0 °C
Calculations:
(a) Convert temperatures to <em>kelvins
</em>
T₁ = (31.5 + 273.15) K = 304.65 K
T₂ = (21.0 + 273.15) K = 294.15 K
(b) Calculate the <em>pressure
</em>
p₁ = 122.2 kPa × (29.2/34.3) × (304.65/294.15)
= 122.2 kPa × 0.8542 × 1.0357
= 108 kPa
As the period number increases on the periodic table, moving from top to bottom, the atomic radius of the elements increases as well.
Answer:
Due to the resonance structures
Explanation:
In the question:
"<em>Explain why, when the guanidino group of arginine is protonated, the double-bonded nitrogen is the nitrogen that accepts the proton. There is a scheme of a reversible reaction, where one equivalent of the reactant reacts with two equivalents of H plus</em>"
We have to take into account the structure of the <u>amino acid</u> arginine. In which, we have the amino and the carboxylic groups in the right and the <u>guanidine group in the left</u>.
In this group, we have a central carbon with three nitrogen atoms around and a double bond with the nitrogen on the top. This nitrogen on the top will accept the proton because the structure produced will have a positive charge on this nitrogen. Then, the double bond with the carbon can be delocalized into the nitrogen producing a positive charge in the carbon.
In this structure (<u>the carbocation</u>), we can have several resonance structures. In the <em>blue option</em>, we can produce a double bond with the nitrogen on the right. In the <em>purple option</em>, we can produce a double bond with the nitrogen on the left.
In conclusion, if the nitrogen in the top on the guanidine group accepts an hydrogen atom and we will have <u>several resonance structures that can stabilize the molecule.</u> Due to this, the nitrogen in the top its the best option to accept hydrogens.
See figure 1
I hope it helps!
Answer:
Both of these phenomena is due to the ignition temperature.
Explanation:
Trees don't spontaneously catch fire because there is a temperature above which materials combust. This is called the "ignition temperature." This temperature must be reached before the trees will ignite, and the external condition does not always harbor such high temperature.
Fires don't stop immediately because, while some parts of the flame has cooled down sufficiently below the ignition temperature, other parts of the flame have not. It takes time for all the part of the flame to cool down below ignition temperature for the burning to stop.
One Ba2+ and two Br- ions will be there.
Answer is 3