Answer:
- <u><em>294.307 g/mol</em></u>
Explanation:
The first question for this statment is:
- <em>Calculate the gram-formula-mass of aspartame. </em>
<em />
<h2>Solution</h2>
The chemical formula is:

The <em>gram-formula-mass </em>is calculated adding the masses for all the atoms in the molecular formula:
Atom Number of atoms Atomic mass Total mass
g/mol g/mol
C 14 12.011 14 × 12.011 = 164.154
H 18 1.008 18 × 1.008 = 18.144
N 2 14.007 2 × 14.007 = 28.014
O 5 15.999 5 × 15.999 = 79.995
===================
Total 294.307 g/mol
Answer: 294.307 g/mol
Answer : The number of molecules present in nitrogen gas are,
Explanation :
First we have to calculate the moles of nitrogen gas by using ideal gas equation.
where,
P = Pressure of
gas =
(1 atm = 760 mmHg)
V = Volume of
gas = 985 mL = 0.982 L (1 L = 1000 mL)
n = number of moles
= ?
R = Gas constant =
T = Temperature of
gas =
Now put all the given values in above equation, we get:

Now we have to calculate the number of molecules present in nitrogen gas.
As we know that 1 mole of substance contains
number of molecules.
As, 1 mole of
gas contains
number of molecules
So,
mole of
gas contains
number of molecules
Therefore, the number of molecules present in nitrogen gas are,
Answer:
329.7%
Explanation:
Percent Yield = Actual Yield/ Theoretical Yield x 100%
Percent Yield = 105.5g/32 x 100% = 329.69 ≈ 329.7 %
Answer is: at higher temperatures reaction will go to the right (forward), more products (C₂H₄ and H₂) will be produce, because this is endothermic reaction (ΔH<span> is positive, </span>energy is consumed) and according Le Chatelier's principle <span>heat is included as a reactant. </span> .
I’m positive it’s gonna be c