Answer:
Given: In triangle ABC and triangle DBE where DE is parallel to AC.
In ΔABC and ΔDBE
[Given]
As we know, a line that cuts across two or more parallel lines. In the given figure, the line AB is a transversal.
Line segment AB is transversal that intersects two parallel lines. [Conclusion from statement 1.]
Corresponding angles theorem: two parallel lines are cut by a transversal, then the corresponding angles are congruent.
then;
and

Reflexive property of equality states that if angles in geometric figures can be congruent to themselves.
by Reflexive property of equality:
By AAA (Angle Angle Angle) similarity postulates states that all three pairs of corresponding angles are the same then, the triangles are similar
therefore, by AAA similarity postulates theorem

Similar triangles are triangles with equal corresponding angles and proportionate side.
then, we have;
[By definition of similar triangles]
therefore, the missing statement and the reasons are
Statement Reason
3.
Corresponding angles theorem
and
5.
AAA similarity postulates
6. BD over BA Definition of similar triangle
Discussion
The discriminate is b^2 - 4*a*c
The general equation for a quadratic is ax^2 + bx + c
In this equation's case
a = 1
b= -5
c = - 3
Solve
(-5)^2 - 4*(1)*(-3)
25 - (-12)
25 + 12
37
Note
Since the discriminate is > 0, the roots are real and different. The roots do exist and there are 2 of them.
Step-by-step explanation:
log (√1000000x)
Rewrite √1000000x as (1000000x)1/2.
expand long ((1000000x)1/2) by moving 1/2
oby moving logarithm.
1/2 longth (1000000x)
Rewrite
log
(1000000x) as log(1000000)+log(x).
1/2(log(1000000)+log(x))
Logarithm base 10 of 1000000 is 6.
1/2(6+log(x))
Apply the distributive property.
1/2.6+1/2 log(x)
Cancel the common factor of 2.
3+1/2 long(x)
Combine 1/2 and log(x)
3+ long(x)/2
add the 2 probabilities together:
0.297 + 0.423 = 0.72
Answer is C