I believe it's the second option. 2 or more elements joined together such that the elements have lost their individual identity in favour of a new set of properties.
The empirical formula : CH₃
<h3>Further explanation</h3>
Given
2.5 g sample
2.002 g Carbon
Required
The empirical formula
Solution
Mass of Hydrogen :
= 2.5 - 2.002
= 0.498
Mol ratio C : H :
C : 2.002/12 = 0.167
H : 0.498/1 = 0.498
Divide by 0.167 :
C : H = 1 : 3
Answer:
We mostly use Kilograms and grams to measure mass =)
Explanation:
The balanced chemical reaction is expressed as:
M + F2 = MF2
To determine the moles of the element fluorine present in the product, we need to determine the moles of the product formed from the reaction and relate this value to the ratio of the elements in MF2. We do as follows:
moles MF2 produced = 0.600 mol M ( 1 mol MF2 / 1 mol M ) = 0.600 mol MF2
molar mass MF2 = 46.8 g MF2 / 0.6 mol MF2 = 78 g/mol
moles MF2 = 46.8 g ( 1 mol / 78 g ) = 0.6 mol
moles F = 0.6 mol MF2 ( 2 mol F / 1 mol MF2 ) = 1.2 moles F
Answer:

Explanation:
Potential energy is energy due to position. It is the product of mass, height, and acceleration due to gravity.

The mass of the textbook is 1.85 kilograms. Assuming this is on Earth, the acceleration due to gravity is 9.8 meters per square second. The height is 2.23 meters.
- m= 1.85 kg
- g= 9.8 m/s²
- h= 2.23 m
Substitute the values into the formula.

Multiply the first 2 numbers together.

Multiply again.

- 1 kilogram square meter per square second (1 kg*m²/s²) is equal to 1 Joules (J)
- Our answer of 40.4299 kg*m²/s² is equal to 40.4299 J

The textbook has <u>40.4299 Joules of potential energy.</u>