Answer: a. 79.6 s
b. 44.3 s
c. 191 s
Explanation:
Expression for rate law for first order kinetics is given by:
where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
a) for completion of half life:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
b) for completion of 32% of reaction
c) for completion of 81 % of reaction
First off chlorine is not a metal so you can ignore that one.
Sodium and Rubidium are in group 1 of the periodic table and Magnesium is in group 2.
Group one metals are more reactive than group two because it is harder for the group two metals to lose their 2 valence (outer most) electrons.
As you go down group 1 there is an increase in the reactivity this is because as you go down there is an increase in the atomic radius which leads to more shielding. This weakens the electrostatic forces of attraction making it easier to lose the outermost electrons, therefore they are more reactive.
Chemical reactions are basically divided into two major classes depending on whether the reaction lose energy or gain energy from the environment during the course of the reaction. The two classes of reaction are exothermic and endothermic reaction.
An exothermic reaction is a type of reaction in which the reaction system lose energy to the environment and thus, the energy content of the reactants is more than that of the product formed. Because of this, the enthapyl change of an exothermic reaction is always negative.
An endothermic reaction is a type of reaction in which the reaction system absorb energy from the environment. Thus, the energy contents of the products is always higher than that of the reactants and the enthapyl change of the reaction is always positive. During the course of the reaction, the reaction container is usually cold to the touch because energy is been absorbed from the environment.
The burning of fossil fuels to supply the electricity we use is a source of sulfur dioxide and nitrogen oxides. Another source is the burning of fuels to power cars, ...