Answer:
W = N!/(n0! * n1!)
Explanation:
Let n0 = number of particles in the lowest energy state
n1 = number of particles in the excited energy state.
Using this, we can say that N = n0 + n1
From this we can then express the weight, W of the close system by finding the factorials of each particles
W = N!/(n0! * n1!)
Hence, the weight W is expressed as W = N!/(n0! * n1!)
Answer:
power is the rate at which energy is transferred or converted
the unit of power is Watts
Answer:
a. cosθ b. E.A
Explanation:
a.The electric flux, Φ passing through a given area is directly proportional to the number of electric field , E, the area it passes through A and the cosine of the angle between E and A. So, if we have a surface, S of surface area A and an area vector dA normal to the surface S and electric field lines of field strength E passing through it, the component of the electric field in the direction of the area vector produces the electric flux through the area. If θ the angle between the electric field E and the area vector dA is zero ,that is θ = 0, the flux through the area is maximum. If θ = 90 (perpendicular) the flux is zero. If θ = 180 the flux is negative. Also, as A or E increase or decrease, the electric flux increases or decreases respectively. From our trigonometric functions, we know that 0 ≤ cos θ ≤ 1 for 90 ≤ θ ≤ 0 and -1 ≤ cos θ ≤ 0 for 180 ≤ θ ≤ 90. Since these satisfy the limiting conditions for the values of our electric flux, then cos θ is the required trigonometric function. In the attachment, there is a graph which shows the relationship between electric flux and the angle between the electric field lines and the area. It is a cosine function
b. From above, we have established that our electric flux, Ф = EAcosθ. Since this is the expression for the dot product of two vectors E and A where E is the number of electric field lines passing through the surface and A is the area of the surface and θ the angle between them, we write the electric flux as Ф = E.A
250kg
would have momentum that is being caried by the impact of the trow