Well evaporation<span> is a gradual vaporization of a liquid on the surface whereas </span>boiling<span> is a rapid vaporization of a liquid only when it is heated to its </span>boiling<span> point. </span>
We anticipate a constant Poynting vector of magnitude since the hot resistor will be emitting heat and none of the electric or magnetic fields will change over time.
S = P/A
= I2R/ 2πrL
= 332 kW/m2
Always pointing away from the wire, this Poynting vector.
<h3>What is the Poynting vector?</h3>
Describes the size and direction of the energy flow in electromagnetic waves using a Poynting vector. It bears the name of the 1884 invention of English physicist John Henry Poynting. It stands for the electromagnetic field's directional energy flux or power flow. The Poynting vector is significant in a static electromagnetic field because it determines the direction of energy flow in an electromagnetic field. This vector represents the radiation pressure of an electromagnetic wave and points in its direction of propagation.
To learn more about Poynting vector, visit:
<u>brainly.com/question/17330899</u>
#SPJ4
Answer:
7.5 J
Explanation:
To answer the question given above, we need to determine the energy that will bring about the speed of 1 m/s. This can be obtained as follow:
Mass (m) = 15 Kg
Velocity (v) = 1 m/s
Energy (E) =?
E = ½mv²
E = ½ × 15 × 1²
E = ½ × 15 × 1
E = ½ × 15
E = 7.5 J
Therefore, to change the speed to 1 m/s, the employee must do a work of 7.5 J.