Answer:
B) 5.05
Explanation:
The wall thickness of a pipe is the difference between the diameter of outer wall and the diameter of inner wall divided by 2. It is given by:
Thickness of pipe = (Outer wall diameter - Inner wall diameter) / 2
Given that:
Inner diameter = ID = 25 ± 0.05, Outer diameter = OD = 35 ± 0.05
Maximum outer diameter = 35 + 0.05 = 35.05
Minimum inner diameter = 25 - 0.05 = 24.95
Thickness of pipe = (maximum outer wall diameter - minimum inner wall diameter) / 2 = (35.05 - 24.95) / 2 = 5.05
or
Thickness = (35 - 25) / 2 + 0.05 = 10/2 + 0.05 = 5 + 0.05 = 5.05
Therefore the LMC wall thickness is 5.05
Answer:
The elastic modulus of the steel is 139062.5 N/in^2
Explanation:
Elastic modulus = stress ÷ strain
Load = 89,000 N
Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2
Stress = load/area = 89,000/0.64 = 139.0625 N/in^2
Length of steel bar = 4 in
Extension = 4×10^-3 in
Strain = extension/length = 4×10^-3/4 = 1×10^-3
Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2
Answer:
The operating system
Explanation:
The job of the operating system is to manage system resources allowing the abstraction of the hardware, providing a simple user interface for the user. The operating system is also responsible for handling application's access to system resources.
For this purpose, the operating system allows a user to run applications on their computing device.
Cheers.
Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.