Ill say <span>calcium hydroxide but hope this helps :)</span>
Number of Atoms in Gold for given mass can be calculated using following formula,
# of Moles = Number of Atoms / 6.022 × 10²³
Or,
Number of Atoms = Moles × 6.022 × 10²³ ------- (1)
Calculating Moles,
As,
Moles = Mass / M.mass
So,
Moles = 4.25 g / 196.96 g/mol
Moles = 0.0215
Putting value of mole in eq.1,
Number of Atoms = 0.0215 × 6.022 × 10²³
Number of Atoms = 1.299 × 10²²
Result:
4.25 g of Gold Nugget contains 1.299 × 10²² Atoms.
Answer:
a) The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) 0.0035 mole
c) 0.166 M
Explanation:
Phosphoric acid is tripotic because it has 3 acidic hydrogen atom surrounding it.
The equation of the reaction is expressed as:

1 mole 3 mole
The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) if 10.00 mL of a phosphoric acid solution required the addition of 17.50 mL of a 0.200 M NaOH(aq) to reach the endpoint; Then the molarity of the solution is calculated as follows

10 ml 17.50 ml
(x) M 0.200 M
Molarity = 
= 0.0035 mole
c) What was the molar concentration of phosphoric acid in the original stock solution?
By stoichiometry, converting moles of NaOH to H₃PO₄; we have
= 
= 0.00166 mole of H₃PO₄
Using the molarity equation to determine the molar concentration of phosphoric acid in the original stock solution; we have:
Molar Concentration = 
Molar Concentration = 
Molar Concentration = 0.166 M
∴ the molar concentration of phosphoric acid in the original stock solution = 0.166 M
Molar mass of NH_3



We know.
No of moles=Given mass/Molar mass


Now
Lets write the balanced equation

- There is 2moles of Ammonia
- 3moles of H_2
- 1mole of N_2
Now

For Hydrogen



For Ammonia



For Nitrogen

