Answer:
The kinetic energy of the system after the collision is 9 J.
Explanation:
It is given that,
Mass of object 1, m₁ = 3 kg
Speed of object 1, v₁ = 2 m/s
Mass of object 2, m₂ = 6 kg
Speed of object 2, v₂ = -1 m/s (it is moving in left)
Since, the collision is elastic. The kinetic energy of the system before the collision is equal to the kinetic energy of the system after the collision. Let it is E. So,

E = 9 J
So, the kinetic energy of the system after the collision is 9 J. Hence, this is the required solution.
Answer:
The net torque is zero
Explanation:
Let's assume that the dipole is compose of two equal but oposite charges e, and it cam be represented by a rod with one end having a charge e and the other end with a charge of -e. Notice that the dipole is parallel to the electric field thus the force felt by both of the charges will be parallel to the electric field. This means that there will be no components of the forces that are perpendicular to the rod which is a requirement for it to have a torque.
Answer:
The difference in the length of the bridge is 0.42 m.
Explanation:
Given that,
Length = 1000 m
Winter temperature = 0°C
Summer temperature = 40°C
Coefficient of thermal expansion 
We need to calculate the difference in the length of the bridge
Using formula of the difference in the length

Where,
= temperature difference
=Coefficient of thermal expansion
L= length
Put the value into the formula


Hence, The difference in the length of the bridge is 0.42 m.
Answer:
The ball is dropped at a height of 9.71 m above the top of the window.
Explanation:
<u>Given:</u>
- Height of the window=1.5 m
- Time taken by ball to cover the window height=0.15
Now using equation of motion in one dimension we have

Let u be the velocity of the ball when it reaches the top of the window
then

Now u is the final velocity of the ball with respect to the top of the building
so let t be the time taken for it to reach the top of the window with this velocity

Let h be the height above the top of the window
