Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
Fire Service Day
International Firefighters' Day (IFFD) is observed on May 4. It was instituted after a proposal was emailed out across the world on January 4, 1999 due to the deaths of five firefighters in tragic circumstances in a bushfire in Australia.
Answer:
Number of electrons, 
Explanation:
It is given that,
Resistance, R = 4 ohms
Current, I = 3 A
Time, t = 5 min = 300 s
We need to find the number of electrons pass through the resistor during this time interval. Let the number of electron is n.
i.e. q = n e ...............(1)
And current, 


e is the charge of an electron


So, the number of electrons pass through the resistor is
. Hence, this is the required solution.