1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laila [671]
3 years ago
9

A 3.0-kg object moves to the right with a speed of 2.0 m/s. It collides in a perfectly elastic collision with a 6.0-kg object mo

ving to the left at 1.0 m/s. What is the total kinetic energy after the collision?
Physics
1 answer:
Zinaida [17]3 years ago
3 0

Answer:

The kinetic energy of the system after the collision is 9 J.

Explanation:

It is given that,

Mass of object 1, m₁ = 3 kg

Speed of object 1, v₁ = 2 m/s

Mass of object 2, m₂ = 6 kg

Speed of object 2, v₂ = -1 m/s (it is moving in left)

Since, the collision is elastic. The kinetic energy of the system before the collision is equal to the kinetic energy of the system after the collision. Let it is E. So,

E=\dfrac{1}{2}m_1v_1^2+\dfrac{1}{2}m_2v_1^2

E=\dfrac{1}{2}\times 3\ kg\times (2\ m/s)^2+\dfrac{1}{2}\times 6\ kg\times (-1\ m/s)^2

E = 9 J

So, the kinetic energy of the system after the collision is 9 J. Hence, this is the required solution.

You might be interested in
1. A 2.5 kg led projector is launched as a projectile off a tall building. At one point, as it
spin [16.1K]

Answer:

Explanation:

I got everything but i. Don't know why but it's eluding me. So let's do everything but that.

a. PE = mgh so

   PE = (2.5)(98)(14) and

   PE = 340 J

b. KE=\frac{1}{2}mv^2 so

   KE=\frac{1}{2}(2.5)(14)^2 and

   KE = 250 J

c. TE = KE + PE so

   TE = 340 + 250 and

   TE = 590 J

d. PE at 8.7 m:

   PE = (2.5)(9.8)(8.7) and

   PE = 210 J

e. The KE at the same height:

   TE = KE + PE and

   590 = KE + 210 so

   KE = 380 J

f. The velocity at that height:

   380=\frac{1}{2}(2.5)v^2 and

   v=\sqrt{\frac{2(380)}{2.5} } so

   v = 17 m/s

g. The velocity at a height of 11.6 m (these get a bit more involed as we move forward!). First we need to find the PE at that height and then use it in the TE equation to solve for KE, then use the value for KE in the KE equation to solve for velocity:

   590 = KE + PE and

   PE = (2.5)(9.8)(11.6) so

   PE = 280 then

   590 = KE + 280 so

   KE = 310 then

   310=\frac{1}{2}(2.5)v^2 and

   v=\sqrt{\frac{2(310)}{2.5} } so

   v = 16 m/s

h. This one is a one-dimensional problem not using the TE. This one uses parabolic motion equations. We know that the initial velocity of this object was 0 since it started from the launcher. That allows us to find the time at which the object was at a velocity of 26 m/s. Let's do that first:

   v=v_0+at and

   26 = 0 + 9.8t and

   26 = 9.8t so the time at 26 m/s is

   t = 2.7 seconds. Now we use that in the equation for displacement:

   Δx = v_0t+\frac{1}{2}at^2 and filling in the time the object was at 26 m/s:

   Δx = 0t + \frac{1}{2}(-9.8)2.7)^2 so

   Δx = 36 m

i. ??? In order to find the velocity at which the object hits the ground we would need to know the initial height so we could find the time it takes to hit the ground, and then from there, sub all that in to find final velocity. In my estimations, we have 2 unknowns and I can't seem to see my way around that connundrum.

4 0
2 years ago
A 50.0 Watt stereo emits sound waves isotropically at a wavelength of 0.700 meters. This stereo is stationary, but a person in a
photoshop1234 [79]

Answer:

a) f' = 432 Hz

b) I = 8.12*10^-4 W/m^2

Explanation:

a) To calculate the frequency of sound waves that car receives, you take into account the Doppler effect. In this case (observer moves away of the source) you have the following formula:

f'=f(\frac{v-v_o}{v+v_s})    (1)

where

f: frequency of the source = ?

v: speed of sound = 343 m/s

vo: speed of the observer = 40.0 m/s

vs: speed of the source = 0 m/s (stationary)

You replace the values of all parameters in the equation (1):

To calculate f' you first calculate the frequency of the sound wave, by using the following formula:

v=\lambda f\\\\

v: speed of sound

λ: wavelength = 0.700 m

f=\frac{v}{\lambda}=\frac{343m/s}{0.700m}=480Hz

Next, you replace the values of all parameters in the equation (1):

f'=(490Hz)(\frac{343m/s-40.0m/s}{343m/s})=432Hz

hence, the frequency perceived by the car is 432 Hz

b) To calculate the power of the sound wave, when the car is 70.0 maway from the speaker, you use the following formula:

I=\frac{P}{4\pi r^2}

P: power of the source = 50.0 W

r: distance to the source = 70.0 m

I=\frac{50.0 W}{4\pi(70.0m)^2}=8.12*10^{-4}\frac{W}{m^2}

hence, the intensity is 8.12*10^⁻4 W/m^2

3 0
2 years ago
When a bus is moving (especially with a high speed) on the road suddenly stops or suddenly changes its direction, the luggage on
Masja [62]

Answer:

First law of motion

Explanation:

I say this because this example shows how an object is staying persistent unless it's compled to change

(not sure)

7 0
3 years ago
Kelly sits on a rock. Her weight is an action force. What is the reaction force?
Dmitrij [34]
The force ffrom the ground that holds the rock up and prevents her from falling through the gound, unless the ground breaks.
4 0
3 years ago
A bike and rider together have a mass of 60 kg. If the bike and rider have an acceleration of 2.0 m/s^2, what is the force on th
Mice21 [21]

The net force on the bike and the rider is 120 N

Explanation:

We can solve this problem by applying Newton's second law of motion, which states that:

F = ma

where

F is the net force exerted on an object

m is the mass of the object

a is its acceleration

For the bike and the rider in this problem, we have

m = 60 kg is their combined mass

a=2.0 m/s^2 is their acceleration

Therefore, the net force on them is

F=(60)(2.0)=120 N

Learn more about Newton's second law:

brainly.com/question/3820012

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • A bullet is fired straight up from a gun with a
    14·2 answers
  • A bicyclist in the Tour de France crests a mountain pass as he moves at 18 km/h. At the bottom, 4.0 km farther, his speed is at
    12·1 answer
  • An ax is an example of a ____________.
    13·1 answer
  • How long does it take to travel to Mercury while going 100,000 km per hour?
    5·1 answer
  • Determine the smallest distance x to a position where 450-nm light reflected from the top surface of the glass interferes constr
    13·1 answer
  • Scientists think that a few hundred million years or so after the Big Bang, space cooled off enough for matter to form. This mat
    14·2 answers
  • HELP ASAP-WILL GIVE BRAINLIEST-NO FILES
    15·1 answer
  • Two go-carts, A and B, race each other around a 1.0 track. Go-cart A travels at a constant speed of 20.0 /. Go-cart B accelerate
    9·1 answer
  • Like charges will exert a force of
    5·2 answers
  • a railway truck of mass 8000 kg travels along a level track at a velocity of 2.5 m s–1 and collides with a stationary truck of m
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!