Answer:
18 liters
Explanation:
Step 1: Figure out what the formula and what you are dealing with.
- 25 degrees celcius is constant, so it is irrelevant for the mathmatical part.
- P1 = 1 atm
- P2 = 20 atm
- V1 = 360 liters
- V2 = trying to find
Note: remember the original equation is V1/P1 = V2/P2
- Step 2: Rearrange the equation to fit this problem, you should get...
V2 = V1 x P1 / P2
- Step 3: Fill our own numbers in. You should get...
360 L x 1 atm / 20 atm = 18 Liters (do the math)
- Answer = 18 Liters
- Remember to just follow the formula and fill it in with your own numbers.
If you need any more help comment below. I am happy to help anytime.
Answer: Option (B) is the correct answer.
Explanation:
It is known that Henry's law is a relation between the concentration of a gas in a liquid (solubility) and the pressure it exerts on the surface of the liquid.
According to Henry's law, the pressure of a gas is directly proportional to the solubility of the gas in a liquid.
Henry's constant is represented by the symbol
. And, mathematically it is represented as follows.
P =
where, P = pressure and C = solubility
As the pressure for the given species is the same. Hence, the standard values of solubility of the given species is as follows.
Gas Solubility
Ar 
CO 
Xe 


As, Henry's constant is inversely proportional to the solubility. Hence, more is the value of solubility lesser will be the value of Henry's constant.
Thus, we can conclude that out of the given options CO have the largest Henry's law constant (
) in water.
Answer:
<h2>250 cm³</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question we have

Wr have the final answer as
<h3>250 cm³</h3>
Hope this helps you
<h3>
Answer:</h3>
318.405 g
<h3>
Explanation:</h3>
We are given;
- Volume of K₃PO₄ solution to be prepared as 750.0 mL or 0.75 L
- Molarity of the solution to be prepared as 2.00 M
We are required to determine the mass of K₃PO₄ to be measured.
<h3>Step 1: Determine the number of moles of K₃PO₄</h3>
Molarity = Moles ÷ Volume
Rearranging the formula;
Number of moles = Molarity × Volume
Therefore;
Moles of K₃PO₄ = 2.00 M × 0.75 L
= 1.5 moles
<h3>Step 2: Determine the mass of K₃PO₄ to be measured</h3>
Mass = Number of moles × Molar mass
Molar mass of K₃PO₄ = 212.27 g/mol
Therefore;
Mass of K₃PO₄ = 1.5 moles × 212.27 g/mol
= 318.405 g
Therefore, the mass of K₃PO₄ that should be weighed is 318.405 g