Answer:
The waves will increase in frequency
Explanation:
As the young girl moves her hand back and forth faster, it will be observed that number of back and forth motions increase every second. Also the distance between crest and trough of the wave (wavelength) will be reduced as she moves her hand back and forth faster.
Frequency = number of turns (moves) per second
The waves will increase in frequency since there will be more number of back and forth motions in every second.
Also,
The distance between crest and trough will be reduced, which implies that there will be decrease in waves wavelength.
This can also be verified using wave equation;
V = Fλ
At constant velocity,
F ∝ ¹/λ
Thus, decrease in wavelength will cause increase in frequency of the waves.
The right answer is : The waves will increase in frequency
Heat equation, Q = m.c.Δt
Here, c represents " the specific heat of the substance "
Hope this helps!
The answer would be the one where the left side is less than or equal to 130 because 130 has to be the greatest value and the value of the w's cannot exceed 130, but they can equal it
Answer:
ωB = 300 rad/s
ωC = 600 rad/s
Explanation:
The linear velocity of the belt is the same at pulley A as it is at pulley D.
vA = vD
ωA rA = ωD rD
ωD = (rA / rD) ωA
Pulley B has the same angular velocity as pulley D.
ωB = ωD
The linear velocity of the belt is the same at pulley B as it is at pulley C.
vB = vC
ωB rB = ωC rC
ωC = (rB / rC) ωB
Given:
ω₀A = 40 rad/s
αA = 20 rad/s²
t = 3 s
Find: ωA
ω = αt + ω₀
ωA = (20 rad/s²) (3 s) + 40 rad/s
ωA = 100 rad/s
ωD = (rA / rD) ωA = (75 mm / 25 mm) (100 rad/s) = 300 rad/s
ωB = ωD = 300 rad/s
ωC = (rB / rC) ωB = (100 mm / 50 mm) (300 rad/s) = 600 rad/s
Answer:350.92 KJ/kg
Explanation:
Given the process is reversible adiabatic i.e it is isentropic
From steam table
For isentropic process
at
Therefore Work output of the turbine per unit mass of steam is =
=3317.03-2966.11
=350.92 KJ/kg