Answer:
L = 41.09 Kg m2 / s The angular momentum does not depend on the time
Explanation:
The definition of angular momentum is
L = r x p
Where blacks indicate vectors
Let's apply this definition our case. Linear momentum
p = m v
Let's replace
L = m r x v
The given function is
x = 6.00 i ^ + 4.15 t j
^
We look for speed
v = dx / dt
v = 0 + 4.15 j ^
To evaluate the angular momentum one of the best ways is to use determinants
![L = m \left[\begin{array}{ccc}i&j&k\\6&4.15t&0\\0&4.15&0\end{array}\right]](https://tex.z-dn.net/?f=L%20%3D%20m%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C6%264.15t%260%5C%5C0%264.15%260%5Cend%7Barray%7D%5Cright%5D)
L = m 6 4.15 k ^
The other products give zero
Let's calculate
L = 1.65 6 4.15 k ^
L = 41.09 Kg m2 / s
The angular momentum does not depend on the time
Answer:
The diameter of the hole increases
Explanation:
Metals expand and contract with temperature. Whenever metal is heated, it usually expands in relation to its thermal expansivity. This expansion leads to a slight increase in surface area.
Once the surface area of the metal changes, this means that the dimensions of the whole metal surface changed. As a result, the diameter of the hole drilled in the metal plate will change also. In our case, the diameter of the hole will increase.
(100, 108)
Due to
1.2x90=108
100, 108
Because the charges of static electricity and the eons coming from your hair pull together to make the balloon stick
I believe the answer would be mass. Low mass stars and medium mass stars often become white dwarfs when they die while high mass stars explode in violent explosions called supernovas and usually leave behind a black hole or a neutron star.