The answer is earth's crust
Answer:
the minimun horizontal force is = 5,88 N
Explanation:
Using a free body diagram we can calculate this force, in the image attached and using Newton's law we have:
Answer:
So, you're going to need the equation ρ = ρo [1 + α(T-To)]
1.59x10^-8 ohms*m is your ρo because that is measured at your reference temperature (To), 20◦C. T is your 6◦C and α is 0.0038(◦C)−1. So, using that you solve for ρ. If you keep up with the units though, you notice it comes out to be ohms*m and that isn't what you want.
So, the next equation you need is J=σE where E is your electric field (3026 V/m) and σ is the electrical conductivity which is the inverse of your answer you got in the previous equation. So find the inverse of that answer and multiply it by your electric field and that will give you the current density.
I hope this helps!
Explanation:
The solution would be like this for this specific problem:
F = (G Me Mo) / Re^2
F / Mo = (G Me) / Re^2
G = gravitational constant
= 6.67384 * 10^-11 m3 kg-1 s-2
Me = 5.972 * 10^24 kg
Re^2 = (6.38 * 10^6)^2 m^2
= 40.7044 * 10^12 m^2 = 4.07044 * 10^13 m^2
G Me / Re^2 = (6.67384 * 10-11
* 5.972 * 10^24) / 4.0704 * 10^13 = 9.7196 m/s^2
9.7196 m/s^2 = acceleration
due to Earth’s gravity
Therefore, the value of the composite constant (Gme / r^2e) that is to be
multiplied by the mass of the object mo in the equation above is 9.7196
m/s^2.