Work = Force x Distance
47.2J = 23.3N x d
d = 47.2/23.3
d = 2.0258 m
hope this helps :P
Answer:
A. 456 seconds
Explanation:
We are given that two students walk in the same direction along a straight path at a constant speed.
One student walks with a speed=0.90 m/s
second student walks with speed=1.9 m/s
Total distance covered by each students=780 meter
We have to find who is faster and how much time extra taken by slower student than the faster student.
Time taken by one student who travel with speed 0.90 m/s=
Time=
Time taken by one student who travel with speed 0.90 m/s
=
Time taken by one student who travel with speed 0.90 m/s
=866.6 seconds
Time taken by second student who travel with speed 1.9 m/s=
=410.5 seconds
The second student who travels with speed 1.9 m/s is faster than the student travels with speed 0.90 m/s .
Extra time taken by the student travels with speed 0.90 m/s=866.6-410.5=456.1 seconds
Extra time taken by the student travels with speed 0.90 m/s=456 seconds
Hence, option A is true.
This means that we shouldn't imagine electrons as single objects going around the atom. Instead, all we know is the probability of finding an electron at a particular location. What we end up with is something called an electron cloud. An electron cloud is an area of space in which an electron is likely to be found. It's like a 3-D graph showing the probability of finding the electron at each location in space. Quantum mechanics also tells us that a particle has certain numbers (called quantum numbers) that represent its properties. Just like how materials can be hard or soft, shiny or dull, particles have numbers to describe the properties. These include a particle's orbital quantum numbers, magnetic quantum number, and its spin. No two electrons in an atom can have exactly the same quantum numbers. Orbital quantum numbers tell you what energy level the electron is in. In the Bohr model, this represents how high the orbit is above the nucleus; higher orbits have more energy. The first orbit is n=1, the second is n=2, and so on. The magnetic quantum number is just a number that represents which direction the electron is pointing. The other important quantum mechanical property, called spin, is related to the fact that electrons come in pairs. In each pair, one electron spins one way (with a spin of one half), and the other electron spins the other way (with a spin of negative one half). Two electrons with the same spin cannot exist as a pair. This might seem kind of random, but it has effects in terms of how magnetic material is. Materials that have unpaired electrons are more likely to be magnetic
It's highly reactive and contains only one valence electron
Answer:
static electricity and then lightning rod