1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FrozenT [24]
3 years ago
13

An electron is released from rest at a distance of 0.470 m from a large insulating sheet of charge that has uniform surface char

ge density 4.00 × 10^−12 C/m^2 . 1) How much work is done on the electron by the electric field of the sheet as the electron moves from its initial position to a point 3.00 × 10^−2 m from the sheet?
Express your answer to three significant figures and include the appropriate units.

2) What is the speed of the electron when it is 3.00 × 10^−2 m from the sheet?
Express your answer to three significant figures and include the appropriate units.
Physics
1 answer:
ArbitrLikvidat [17]3 years ago
7 0

Answer:

Part a)

W = 1.58 \times 10^{-20} J

Part b)

v = 1.86 \times 10^5 m/s

Explanation:

Part a)

Electric field due to large sheet is given as

E = \frac{\sigma}{2\epsilon_0}

\sigma = 4.00 \times 10^{-12} C/m^2

now the electric field is given as

E = \frac{4.00 \times 10^{-12}}{2(8.85 \times 10^{-12})}

E = 0.225 N/C

Now acceleration of an electron due to this electric field is given as

a = \frac{eE}{m}

a = \frac{(1.6 \times 10^{-19})(0.225)}{9.1 \times 10^{-31}}

a = 3.97 \times 10^{10}

Now work done on the electron due to this electric field

W = F.d

d = 0.470 - 0.03

d = 0.44 m

So work done is given as

W = (ma)(0.44)

W = (9.11 \times 10^{-31})(3.97 \times 10^{10})(0.44)

W = 1.58 \times 10^{-20} J

Part b)

Now we know that work done by all forces = change in kinetic energy of the electron

so we will have

W = \frac{1}{2}mv^2 - 0

1.58 \times 10^{-20} = \frac{1}{2}(9.1\times 10^{-31})v^2

v = 1.86 \times 10^5 m/s

You might be interested in
The equation of a transverse wave traveling along a very long string is y 6.0 sin(0.020px 4.0pt), where x and y are expressed in
zhannawk [14.2K]

Answer:

given

y=6.0sin(0.020px + 4.0pt)

the general wave equation moving in the positive directionis

y(x,t) = ymsin(kx -?t)

a) the amplitude is

ym = 6.0cm

b)

we have the angular wave number as

k = 2p /?

or

? = 2p / 0.020p

=1.0*102cm

c)

the frequency is

f = ?/2p

= 4p/2p

= 2.0 Hz

d)

the wave speed is

v = f?

= (100cm)(2.0Hz)

= 2.0*102cm/s

e)

since the trignometric function is (kx -?t) , sothe wave propagates in th -x direction

f)

the maximum transverse speed is

umax =2pfym

= 2p(2.0Hz)(6.0cm)

= 75cm/s

g)

we have

y(3.5cm ,0.26s) = 6.0cmsin[0.020p(3.5) +4.0p(0.26)]

= -2.0cm

6 0
3 years ago
What is the momentum of a 750 kg car traveling at a velocity of 25 m/s north?
olga_2 [115]

Answer:

18750 kg-m/s

Explanation:

Momentum = mass x velocity 

3 0
2 years ago
Read 2 more answers
Sarah wants to install a wind turbine on her farm, which would convert wind energy to electricity to power her home. She can onl
Marina86 [1]

Answer:

The best choice would be c

Explanation: Sarah wants this wind turbine to efficient since she can only get one. C has the most reasonable option data collected will help her know the best wind speed over her farm.

6 0
3 years ago
Read 2 more answers
Find the angle formed by two forces of 7N and 15N respectively if its result is worth 20N
nadezda [96]
First, you need to make certain assumptions before solving this question. Why? Because there are no information given about the direction of these forces. In such questions as above, ALWAYS make the following assumptions:

1) Take first force, say F_{1}, and assume that it is pointing towards the x-direction.

Let us take the 7N force! By keeping the above assumption in our minds, the force vector would be like:
F_{1} = 7i, where i = Unit vector in the x-direction.

2) Take the second force, say F_{2}, and assume that it is making an angle \alpha with the first force F_{1}.

Let us take the 15N force! By keeping the above assumption in our minds, the forces vector would be like:

F_{2} = (15*cos \alpha)i + (15*sin \alpha )j

Now from simple vector addition, we know that,
F_{R} = F_{1} + F_{2} --- (A)

Where F_{R} = Resultant vector.
NOTE: In equation (A), all forces are in vector notation. Assume that there is an arrow head on top of them.

Let us find F_{1}+F_{2} first!
F_{1}+F_{2} =  7i+(15*cos \alpha)i + (15*sin \alpha )j

=> F_{1}+F_{2} =  (7+15*cos \alpha)i + (15*sin \alpha )j

Now the magnitude of F_{1}+F_{2} is,
| F_{1}+F_{2}| = \sqrt{ (7+ 15*cos \alpha)^{2} +  (15*sin \alpha )^{2}}

=> | F_{1}+F_{2}| = \sqrt{ 49 + 225*(cos \alpha)^{2} + 210*(cos \alpha)+ 255*(sin \alpha )^{2}}

Since (sin \alpha)^{2} + (cos \alpha)^{2} = 1, therefore,

=> | F_{1}+F_{2}| = \sqrt{ 49 + 225 + 210*(cos \alpha)}

Since  | F_{1}+F_{2}| = |F_{R}|, and the magnitude of the resultant force is 20N, therefore,

 |F_{R}| = | F_{1}+F_{2}|
20 = \sqrt{ 49 + 225 + 210*(cos \alpha)}

Take square on both sides,
400 = 49 + 225 + 210*(cos \alpha)
(cos \alpha) =  \frac{3}{5}

\alpha = 53.13^{o}

Ans: Angle formed by the two forces, 7N and 15N, is: 53.13°

-israr

4 0
3 years ago
A current runs from the left to the right in a long, straight wire. How does the magnetic field at point X compare with the magn
vitfil [10]
I think the answer is <span>D. The magnetic field at point X points into the page, and the magnetic field at point Y points out of the page.</span>
7 0
2 years ago
Other questions:
  • This illustration represents the compoundA)carbon oxide.B)carbon dioxide.C)carbon monoxide.EliminateD)monocarbon oxide.
    10·2 answers
  • A parallel-plate air capacitor is made from two plates 0.210 m square, spaced 0.815 cm apart. it is connected to a 120 v battery
    5·1 answer
  • Two plane mirrors make the angle α = 46.0 ° α=46.0° between them. A ray of light incident on one of the mirrors is reflected and
    8·1 answer
  • How to explain horizontal in words
    15·1 answer
  • an eco friendly hotel is under construction. Which strategies will help hotel management reach its goal of being eco friendly
    13·1 answer
  • At 0°C, frozen water (ice) changes to liquid water. When an ice cube is placed on something that is warmer than it heat will mov
    12·1 answer
  • A constant eastward horizontal force of 70 N is applied to a 12 kg crate
    15·1 answer
  • Fill in the blanks please.
    6·1 answer
  • What is this question
    10·1 answer
  • When 1.5 kg of mass turns into energy, how much energy is released? Find the equation, substitution, and number with units.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!